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1. Abstract
Call-by-name evaluation, weak head normal forms, and functional
extensionality: pick at most two. All three seem desirable, but are
inconsistent together, representing a trilemma. We can respect ex-
tensionality while computing to weak head normal forms—where
evaluation stops once it hits a lambda—by switching to call-by-
value evaluation, but sticking with call-by-name forces us to aban-
don one of the other two. Weak head normal forms are appealing
since they let us run closed programs without going under binders,
which seems well suited for implementations. The essential prob-
lem, though, is that “stopping at a lambda” is fundamentally incon-
sistent with the η axiom which can erase top-level lambdas.

When we move from the pure, untyped λ-calculus to one with
first-class control effects, the situation becomes even worse. Not
only are we faced with our original trilemma, but η reduction
breaks confluence as well. Recent work [2, 10] restores confluence
in control calculi by replacing η with a different interpretation of
extensionality and β with a different interpretation of functions.
We bring new insight into these solutions by recasting functions
as pattern matching abstractions on their calling contexts. Further,
by translating this alternate viewpoint back to the λ-calculus, we
derive an abstract machine for call-by-name evaluation which re-
spects η, keeps evaluation at the top level, and avoids any descent
under binders. Our machine sidesteps the trilemma by going fur-
ther and computing to head normal forms. Effectively, control has
taught us a better way to implement the pure λ-calculus.

2. Weak Head Normal Forms and Extensionality
Programming language designers are faced with multiple, some-
times contradictory, goals. On the one hand, it is important that
users be able to reason about their programs. On the other hand,
we want our languages to support simple and efficient implemen-
tations. For the first goal, extensionality is a particularly desirable
property. We should be able to use a program without knowing how
it was written, only how it behaves. In the λ-calculus, extensional
reasoning is partially captured by the η law, a strong equational
property about functions which says that functional delegation is
unobservable: λx.f x = f . It is essential to many proofs about
functional programs: for example, the well-known “state monad”
only obeys the monad laws if η holds [8]. The η law is compelling
because it gives the “maximal” extensionality possible in the un-
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typed λ-calculus: if we attempt to equate any additional terms be-
yond β, η, and α, the theory will collapse [1] .

For the second goal, it is important to have notions of normal
forms, specifying the possible results of normalization, that can be
efficiently computed. Beyond the usual β-normal forms, we utilize
ideas such as head normal and weak head normal forms. A λ-
calculus term is a head normal form (HNF) if it is a variable, a
non-redex application whose left branch is a HNF, or a lambda
whose body is a HNF. Going even further, a weak head normal
form (WHNF) is defined just like a head normal form except that
we consider all lambda abstractions to be WHNFs.

Weak head normal forms give an appealing approach to eval-
uating closed λ-calculus terms. A closed term is a WHNF if and
only if it is a lambda abstraction, so there is no need to ever look
inside lambdas during evaluation. This is a great boon for imple-
mentors: so long as we start with a closed term, we never encounter
a free variable during evaluation. This lends itself nicely to abstract
machines, such as the Krivine machine [7], which specifies how
to find the next redex and computes WHNFs with only two rules
(Figure 1). Note that we present this machine using substitution for
clarity: implementing efficient substitution by environments and
closures follows straightforwardly from the usual technique. By

c ∈ Commands ::= 〈v||e〉
v ∈ Terms ::= x | λx.v | v v

E ∈ CoValues ::= tp | v · E

〈v v′||E〉 〈v||v′ · E〉
〈λx.v||v′ · E〉 〈v[v′/x]||E〉

Figure 1. The Krivine Abstract Machine

comparison, computation of HNFs seems to inherently require re-
duction under lambda. Thus, computation of WHNFs appears fa-
vorable for practical implementations in a way that HNFs do not.

However, there is a fundamental tension between WHNFs and
the η law. Evaluation to WHNF always finishes when it reaches a
lambda, but fundamentally, η tells us that a lambda might not be
done yet. For example, the η law says that λx.Ωx is the same as
Ω, where Ω is the non-terminating computation (λy.y y)(λy.y y).
Yet, λx.Ωx is a WHNF that is done while Ω isn’t. Thus, if we
want to use WHNFs as our stopping point, the η law becomes
suspect. This puts us in a worrying situation: η equivalent programs
might have different termination behavior. As such, we cannot use
essential properties, like our earlier example of the monad laws for
state, for reasoning about our programs without the risk of changing
a program that works into one that doesn’t.

The root of our problem is that we combined extensionality
with effects, namely non-termination. This is one example of the
recurrent tension that arises when we add effects to the call-by-
name λ-calculus. For example, with printing as our effect, we
would encounter a similar problem when combining evaluation
to WHNF and η. Evaluating the term print "hello"; (λy.y) to
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c ∈ Commands ::= 〈v||e〉
v ∈ Terms ::= x | µα.c | µ[(x · α).c] | car(E)

E ∈ CoValues ::= α | v · E | cdr(E)

〈µα.c||E〉 →µ c[E/α]

car(v · E)→car v

cdr(E) · cdr(E)→η· E

cdr(v · E)→cdr E

µα.〈v||α〉 →ηµ v

µ[(x · α).c]→exp µβ.c[car(β)/x, cdr(β)/α]

Figure 2. Projection Based Calculus

WHNF would print the string "hello", while evaluating the η-
expanded term λx.(print "hello"; (λy.y))x would not.

3. Call Stacks as Structures
The situation of η becomes even worse when we extend the
λ-calculus with control effects. Specifically, in Parigot’s λµ-
calculus [11], which extends the call-by-name λ-calculus with con-
trol abstraction and application, η-reduction breaks confluence [4].
Thus, we find even worse problems with call-by-name evaluation
and extensionality in the λ-calculus with control effects.

To combat this lamentable turn of events, we will invert the way
we think about functions. Instead of focusing on the way functions
are created (via lambda abstractions), we will focus on the way they
are used (via application). That is to say, we will take call stacks, as
found in the Krivine abstract machine, as the essential structure of
functions. Consider the way lambdas are implemented in the sec-
ond rule of Figure 1. One interpretation of this rule is that a lambda
pops off the top argument of its call stack. In other words, a lambda
λx.v deconstructs its call stack by pattern matching, transforming
v′ · E into the command 〈v[v′/x]||E〉. We capture this intuition in

c ∈ Commands ::= 〈v||e〉
v ∈ Terms ::= x | µα.c | µ[(x · α).c]

E ∈ CoValues ::= α | v · E

〈µα.c||E〉 = c[E/α]

µα.〈v||α〉 = v

µ[(x · α).〈v||x · α〉] = v

〈µ[(x · α).c]||v · E〉 = c[v/x,E/α]

Figure 3. Sequent Calculus with Functions as Pattern Matching

a variant of Curien and Herbelin’s sequent calculus λ̄µµ̃ [3] (Fig-
ure 3). This calculus contains the commands and co-values of the
Krivine machine directly in the syntax of programs, and expresses
control abstraction as the µ-binder, µα.c, which gives a name α
to its call stack before running c. Furthermore, to stress functions
as deconstructions, we write them as a pattern-matching version of
the µ-bindings, so that the lambda λx.v becomes µ[(x ·α).〈v||α〉].
Thus, functions are implemented as the pattern-matching substitu-
tion of both components of a call stack, and the η law is expressed
as erasing the no-op match, µ[(x · α).〈v||x · α〉] = v.

Note that we have not yet solved the confluence problem:
orienting the equations in Figure 3 from left to right yields a
non-confluent rewriting theory. However, Nakazawa and Nagai’s
Λµcons-calculus [10] provides an interesting solution. Their calcu-
lus can be understood as replacing pattern matching on the call
stack with the primitive operations car(−) and cdr(−) for getting
the first and the second components. Just like how we can take apart
tuples with either pattern matching or fst and snd projections, so
too can we deconstruct a call stack with matching or projection.
We transport this solution into the sequent calculus (Figure 2).
Note that the main extensional reasoning principle is no longer a
property about lambdas, but rather a reduction on call stacks (as
given by the η· rule) and a transformation of pattern matching into
projection ( as given by exp rule [5, 9]).

It turns out that, equationally, this projection based calculus
is conservative over the pattern matching calculus in Figure 3.
Further, considering that the λ-calculus with surjective pairing is

c ∈ Command ::= 〈v||E〉
v ∈ Terms ::= x | v v | λx.v | pickn(tp)

E ∈ CoValues ::= v · E | dropn(tp)
〈v v′||E〉 〈v||v′ · E〉 〈λx.v||v′ · E〉 〈v[v′/x]||E〉

〈λx.v||dropn(tp)〉 〈v[pickn(tp)/x]||dropn+1(tp)〉

Figure 4. The Head Reduction Machine for the λ-calculus

not confluent [6], the projection based calculus is rather amazingly
confluent. Indeed, exp-normal forms point out a confluent sub-
syntax, previously discovered as the Stack Calculus [2], which
gives a simple proof of confluence for the whole system.

4. Head Reduction Abstract Machine
An interesting consequence of the projection based reduction the-
ory in Figure 2 is that reduction at the “top level” of a program
no longer stops when encountering a function abstraction. The top-
level reduction of the sequent counterpart of λx.Ωx never halts:

〈µ[(x · α).〈Ω||x · α〉]||δ〉 →∗exp,µ 〈Ω||car(δ) · cdr(δ)〉 → · · ·
Taking advantage of this phenomenon, we now derive an imple-
mentation of the pure λ-calculus which respects the η law while
never going under binders and only reducing at the top level.

We will utilize the macro projection operations pickn(−) and
dropn(−) which, from the perspective of car(−) and cdr(−),
coalesce sequences of projections into a single operation:

drop0(E) , E pickn(E) , car(dropn(E))

dropn+1(E) , cdr(dropn(E))

Now, observe that in the control-free setting, the only co-variable
we need is tp, which represents the “top level” of the program. It
follows that for top-level reduction, pickn(tp) and dropn(tp) are
the only call-stack projections we need in the syntax.

We now construct an abstract machine (Figure 4) for head eval-
uation of the λ-calculus which is exactly like the Krivine machine
with one additional rule. The difference is that, unlike the Kriv-
ine machine which stops when it hits a top-level lambda, the head
reduction machine “splits” the top level into a call stack and con-
tinues. Thus, the WHNF λx.(λy.y)x at the top-level is not done:
〈λx.(λy.y)x||drop0(tp)〉 〈(λy.y)(pick0(tp))||drop1(tp)〉

 ∗ 〈pick0(tp)||drop1(tp)〉
If the machine terminates with a result like 〈pickn(tp)||E〉, it is

straightforward to read back the corresponding head normal form:
〈v||v′ · E〉 ↪→ 〈v v′||E〉

〈v||dropn+1(tp)〉 ↪→ 〈λx.v[x/pickn(tp)]||dropn(tp)〉
where x is not free in v in the second rule. Note that the substitu-
tion v[x/pickn(tp)] replaces all occurrences of terms of the form
pickn(tp) inside v with x. Correctness is ensured by the fact that
c  c′ implies c →? c′ and c ↪→ c′ implies c′ →? c, according
to the calculus in Figure 2. Thus the abstract machine respects the
equational theory of Figure 3, and therefore the λ-calculus with η.

In the end, control and the sequent calculus has revealed to us
an essential aspect of pure functions, and the importance of context
awareness!
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A. Closure Conversion
The Krivine machine we gave at the beginning used substitution
to handle variables in order to simplify the presentation. Some-
times though, we would rather consider abstract machines which
use explicit environments and closures to avoid the need to do sub-
stitutions at run-time. Thus, we consider the Krivine machine with
commands of the form 〈v|σ|E〉, where σ is an extra field repre-
senting the current environment. We write an environment as a list
of bindings—associating variables with closures—where a closure
is a pair of a term and an environment. Environments are treated
abstractly, and must support the usual extension operation, writ-
ten (x 7→ t) :: σ, where a new variable-closure binding is added
and variable lookup operation, written σ(x). The definition of call
stacks must be slightly modified to accommodate storing closures
as function arguments and not just terms. The resulting abstract

c ∈ Commands ::= 〈v|σ|E〉
v ∈ Terms ::= x | λx.v | v v

E ∈ CoValues ::= tp | t · E
σ ∈ Environments ::= [] | (x 7→ t) :: σ

t ∈ Closures ::= (v, σ)

〈v v′|σ|E〉 〈v|σ|(v′, σ) · E〉
〈λx.v|σ|t · E〉 〈v|(x 7→ t) :: σ|E〉

〈x|σ|E〉 〈v|σ′|E〉 where σ(x) = (v, σ′)

Figure 5. Krivine Machine with Environments

machine, given in Figure 5, manages the environment during re-
duction. Instead of substitution, a bound variable is interpreted by
looking it up in the current environment.

The same technique allows us to implement the head reduc-
tion machine without substitutions, shown in Figure 6. Of course,
various alternative designs are possible such, as ones based on De
Bruijn indices. However, the essential core of the machines remain
the same.

c ∈ Commands ::= 〈v|σ|E〉
v ∈ Terms ::= x | λx.v | v v | pickn(tp)

E ∈ CoValues ::= dropn(tp) | t · E
σ ∈ Environments ::= [] | (x 7→ t) :: σ

t ∈ Closures ::= (v, σ)

〈v v′|σ|E〉 〈v|σ|(v′, σ) · E〉
〈λx.v|σ|t · E〉 〈v|(x 7→ t) :: σ|E〉

〈λx.v|σ|dropn(tp)〉 〈v|(x 7→ (pickn(tp), σ)) :: σ|dropn+1(tp)〉
〈x|σ|E〉 〈v|σ′|E〉 where σ(x) = (v, σ′)

Figure 6. Head Reduction Machine with Environments

B. Machine for Head Normalization with Control
The head normalization machine we gave was motivated by con-
trol, but it did not implement a λ-calculus with control. Of course,
the projection based rewriting theory shows us that we can im-
plement control in an extensional way without reducing inside of
binders. However, it turns out that we do not need to use the full
feature set of the projection based calculus in order to achieve ex-
tensional reduction with control. We observe that the only time we
ever need to use projections on the call stack, rather than pattern
matching, is when dealing with the top-level, and this is still true in
the setting with control. Thus, we give a small modification of our
head reduction machine that performs extensional head reduction
for a call-by-name lambda calculus with control (Figure 7).

c ∈ Command ::= 〈v||E〉
v ∈ Terms ::= x | v v | λx.v | pickn(tp) | µα.c

E ∈ CoValues ::= v · E | dropn(tp) | α
〈v v′||E〉 〈v||v′ · E〉

〈λx.v||v′ · E〉 〈v[v′/x]||E〉

〈λx.v||dropn(tp)〉 〈v[pickn(tp)/x]||dropn+1(tp)〉
〈µα.c||E〉 c[E/α]

Figure 7. The Head Reduction Machine for the λ-calculus with
control

We make the syntactic restriction that we only ever project out
of the top level context tp and not out of bound co-variables internal
to the program. This means that we never have to deal with the
situation where we substitute into a projection operation. Doing
so lets us syntactically prohibit co-values like dropn(v · E) or
dropn(dropm(E)), and thus we do not need reduction rules to
deal with them. Of course, that means there is no reduction rule
that can apply at the top level of a command such as

〈λx.v||α〉
but in a machine for evaluating closed programs, we will never en-
counter these. Additionally, we can assume that our source program
does not contain any call stacks, which are unnecessary for writing
programs since the usual syntax for function application is avail-
able. Thus, we see that extensional execution of closed programs
with control can be achieved using the standard interpretation for
functions everywhere, except when dealing with the top-level con-
text. Note that the read-back relation:

〈v||v′ · E〉 ↪→ 〈v v′||E〉
〈v||dropn+1(tp)〉 ↪→ 〈λx.v[x/pickn(tp)]||dropn(tp)〉

where x /∈ FV (v)

is unchanged by the addition of control.
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It seems that everything works out rather simply: it took only a
single additional rule to convert the Krivine machine into a machine
for performing head reduction (and thus respecting η). Similarly, it
takes only a single additional rule to add control to the Krivine
machine. Adding both these rules produces a machine for call-by-
name head reduction with control which respects η.

Finally, we can give a variant of the head reduction machine
with control using environments instead of substitutions. The only
complexity is that we need to keep track of separate environments
for interpreting the variables and co-variables in the term and co-
value of a command. Again, we assume that the source program
does not contain any syntactic call stacks, which now hold closures
as function arguments instead of terms, and which are a run-time
construct of the machine.

Programs ::= 〈v|σ|σ|E〉
c ∈ Commands ::= 〈v||E〉

v ∈ Terms ::= x | λx.v | v v | pickn(tp) | µα.c
E ∈ CoValues ::= dropn(tp) | t · E | α

σ ∈ Environments ::= [] | (x 7→ t) :: σ | (α 7→ s) :: σ

t ∈ Closures ::= (v, σ)

s ∈ CoClosures ::= (E, σ)

〈v v′|σ|σ′|E〉 〈v|σ|σ′|(v′, σ) · E〉
〈λx.v|σ|σ′|t · E〉 〈v|(x 7→ t) :: σ|σ′|E〉

〈λx.v|σ|σ′|dropn(tp)〉 〈v|(x 7→ (pickn(tp), σ′)) :: σ|σ′|dropn+1(tp)〉
〈x|σ|σ′|E〉 〈v|σ′′|σ′|E〉 where σ(x) = (v, σ′′)

〈λx.v|σ|σ′|α〉 〈λx.v|σ|σ′′|E〉 where σ′(α) = (E, σ′′)

〈µα.〈v||E〉|σ|σ′|E′〉 〈v|σ′′|σ′′|E〉
where σ′′ = (α 7→ (E′, σ′)) :: σ

Figure 8. Head Reduction Machine with Control using Environ-
ments
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