
Administrative normal form, continued
Sharing control in direct style

Luke Maurer Paul Downen
Zena M. Ariola

University of Oregon
{pdownen,maurerl,ariola}@cs.uoregon.edu

Simon Peyton Jones
Microsoft Research Cambridge

simonpj@microsoft.com

Abstract
Administrative normal form (ANF) promises to reap the benefits
of continuation-passing style (CPS) while retaining the advantages
of direct style. We believe ANF falls short of this ideal because
it does not provide a satisfactory way to describe shared control
flow, as CPS does naturally. We show how CPS itself can guide
us in adding a control effect to ANF and taming it to regain pu-
rity, guaranteeing an efficient implementation. Interestingly, even
though CPS is usually used for compiling call-by-value languages,
our technique is independent of the evaluation strategy. In short, we
propose that the known advantages of CPS can be achieved by ex-
tending ANF or another direct-style representation. Does this mean
that CPS is finally out? No: whatever the compiler’s chosen repre-
sentation, we suspect CPS will reveal new insights about program
manipulation.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Intermediate representations; Compiler optimizations;
Control effects

Talk proposal
Continuation-passing style has a storied history both in theory and
in the implementation of compilers. It advanced the theory of the
call-by-value λ-calculus by providing new tools to study execution
behavior, validating new axioms for program equivalence [12]. It
has also helped devise and compare powerful new control operators
[14]. For compiler implementors, CPS provides a way of represent-
ing control flow that reuses well-understood λ-calculus constructs
but readily translates to assembly code [1, 13]. Furthermore, it can
express many features, such as state and control, without adding
new language constructs; in fact, any monadic effect can be ex-
pressed using CPS [4].

Yet CPS has sometimes fallen out of favor as an internal rep-
resentation. It requires a whole-program transformation that leaves
the code with a radically different structure. It can increase the size
of the terms significantly, and the transformed terms take more
technical knowledge to understand. Furthermore, the benefits to
code generation may not be appreciable earlier in the pipeline—
to the optimizer, having a name for each evaluation context may
only provide unnecessary details.

Direct-style representations have strengths of their own as well.
Common subexpressions are simple to recognize and eliminate.
Also, when the internal representation is merely a distillation of the
original program, one can formulate rewrites in terms of the source
language. The Glasgow Haskell Compiler (GHC) takes advantage
of this by allowing user code to specify rewrite rules for the opti-

mizer to apply, thus imparting domain knowledge about specialized
datatypes to a general-purpose simplifier [10].

Given that CPS is used to prove things about direct-style pro-
grams, one might hope that reductions in CPS programs could be
translated into direct style, thus allowing an optimizer to exploit
CPS technology without needing to implement it. A famous 1993
paper by Flanagan et al. [5] showed that this was in fact possi-
ble: putting code into their administrative normal form, or ANF,
promises to perform the same transformations that a CPS compiler
would. In this way, rather than a day-to-day tool, CPS can be a
source of wisdom to be consulted before returning to work in di-
rect style.

So it may seem that, as a compiler technology, CPS is obsolete.
However, a 2007 paper by Kennedy [7] argues otherwise, noting
that there are significant drawbacks to ANF and other modern
direct-style representations. One major issue has to do with code
size, which is a major concern for modern processors; increases in
size threaten to flood the cache and wipe out the gains made by
whatever improvements an optimizer might make.

To see where code size comes into play, consider this function:

g x = f (casexof A→ 1

B → 2)

(1)

In call-by-value (or if f is strict), we would like to move the
application of f into the branches of the case. Such a commuting
conversion—a term originating from proof theory [6]—is sound
because whichever branch is taken, its value will eventually be the
argument to f anyway. Commuting conversions are useful both to
aid code generation and to bring redexes together, enabling more
compile-time reductions [9].

There is a risk, however. If we simply move the application
inward as is, we produce:

g x = casexof A→ f 1

B → f 2

Where before we had one occurrence of f , we now have two. Here
this is benign enough, but f could be an arbitrary expression, or
more generally an arbitrary context (e.g., another case expression).
In general, unrestrained commuting conversions lead to exponen-
tial blowup [8].

An obvious solution is to optimize the original function g by
introducing a let-bound function with the shared code:

g x = let j x = f x

in casexof A→ j 1

B → j 2

(2)

Such a function j is usually called a join point. A join point
represents a place where multiple branches of control flow come

1 2016/6/11



together (in other words, where they join). In this sense, they
are much like the φ-nodes in the SSA languages favored in the
imperative world [3].

Of course, all we have really done here is to reinvent the con-
tinuation (as has happened many times before [11]). Nonetheless,
join points are a simple and effective way to manage code size when
doing commuting conversions. In addition, they can compile to fast
code: since every invocation of a join point is a tail call, they can be
represented by simple labeled blocks of code and invoked by jump-
ing. Thus the actual increase in function-call overhead is reduced
sharply.

Unfortunately, the story doesn’t end there. Once a join point
is created, there may be any number of further transformations
applied to the program—including more commuting conversions.
Suppose we call g as the argument to another function, and g ends
up being inlined:

a x = h (g x) → a x = h (let j x = f x

in casexof A→ j 1

B → j 2)

As before, we want to perform commuting conversions that push
the call to h downward:

a x = let j x = f x

in casexof A→ h (j 1)

B → h (j 2)

(3)

Sadly, we can no longer compile j as a block, since the calls to
it aren’t tail calls. It no longer acts as a join point, and so it incurs
full function-call overhead.1 In the end, our method of sharing code
paths at low cost was fragile to further rewrites.

One solution is to be more careful doing commuting conver-
sions. This approach was taken by Benton et al. in developing
SML.NET [2]. Their compiler (at the time) used a monadic inter-
mediate representation rather than ANF, but ran into an issue with
an example very similar to ours. Their solution was to mind the
order in which commuting conversions were performed, so as to
avoid lifting the same case more than once. However, this only
avoids the issue in the span of a single normalization pass. We
would prefer a method that is robust to other transformations; there
may be several different optimization passes, each of which triggers
a round of normalization and commuting conversions.

Let us see how CPS behaves in this situation. Here is the CPS
translation of g as we first defined it in (1):

gcps (x, k) = (λk′. casexof A→ k′ 1

B → k′ 2)

(λv.f (v, k))

In place of the commuting conversion, we have a simple β-
reduction. Moreover, if duplication is a concern, we can simply
bind the continuation to a name as we might any value argument:

gcps (x, k) = let k′ v = f (v, k)

in casexof A→ k′ 1

B → k′ 2

Note the similarity to the definition of g with a join point given in
(2).

Now, what happens when the optimized gcps is inlined?

acps (x, k) = gcps (x, λw.h (w, k))

1 We might also be concerned with the duplication of h here, but of course
that simply calls for another join point. This, however, would not address
the problem with j.

This time, the call to h is substituted into the shared continuation:

acps (x, k) = let k′ v = f (v, λw.h (w, k))

in casexof A→ k′ 1

B → k′ 2

Since k′ is still only ever tail-called, it can still be compiled as a
block. CPS has shown us the way: a commuting conversion should
bring the evaluation context into the join point, not its call sites.

As we have seen, CPS compilers can manage code size by shar-
ing continuations. Sharing code among different execution paths is
as easy as using a name in multiple places. This convenience is a
consequence of the way CPS collapses control flow with data flow:
sharing control becomes exactly the same as sharing values. The
direct-style λ-calculus does not exhibit this symmetry; once a CPS
program has a shared continuation like in gcps , it no longer corre-
sponds to any direct-style program.

Now, let’s see if we can put what we’ve learned into direct style.
Suppose we distinguish join points from other bindings using the
label keyword, and then we invoke join points using the jump
keyword. When we perform the first commuting conversion, we
end up here:

g′ x = label j v = f v

in casexof A→ jump j 1

B → jump j 2

Again, we inline g′ into another function call:

a′ x = h (label j v = f v

in casexof A→ jump j 1

B → jump j 2)

At this point, however, we follow CPS’s suggestion and perform
the second commuting conversion like this:

a′ x = label j v = h (f v)

in casexof A→ jump j 1

B → jump j 2

Compare to the optimized a in (3). The application of h now moves
into the join point j and disappears from j’s call sites. If there were
a third branch that didn’t invoke the join point, sayC → 3, it would
take on the new evaluation context as usual, becoming C → h 3.
All of this follows directly from the way substitution occurs on
continuations in CPS.

This technique is very general. Notice that evaluation order was
never important to our discussion; all that matters is that the case
occurs in a strict context (as in g and again in a). We used call-
by-value in the examples simply for brevity, but the idea applies
to any language, lazy or eager.2 Of course, as we are proposing
adding labels and jumps to a direct-style language, it would appear
we now have a control calculus.3 Interestingly, we tame the control
effect with simple scope restrictions on labels, regaining the purity
of the language. Thus, we have made join points robust while still
being able to compile them to fast code.

So, is this the end for CPS? Have we improved ANF to the point
where we can drop CPS from our compilers and never look back?
We hesitate to claim so. After all, tomorrow someone may find
something else we can learn from CPS. Or perhaps there are lessons
in CPS with state, or CPS with exceptions, or some other variation.
In any case, while CPS may go in and out of fashion as an internal
representation, it will long have things to teach theoreticians and
practitioners alike.

2 In fact, we have been implementing these ideas for compiling Haskell.
3 Indeed, we have: callcc f = label here x = x in f (λx. jump here x)

2 2016/6/11



References
[1] A. W. Appel. Compiling with Continuations. Cambridge University

Press, 1992. ISBN 0-521-41695-7.
[2] N. Benton, A. Kennedy, S. Lindley, and C. V. Russo. Shrinking re-

ductions in SML.NET. In Implementation and Application of Func-
tional Languages, 16th International Workshop, IFL 2004, Lübeck,
Germany, September 8-10, 2004, Revised Selected Papers, pages 142–
159, 2004. . URL http://dx.doi.org/10.1007/11431664_9.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, 1991. . URL http://doi.acm.org/
10.1145/115372.115320.

[4] A. Filinski. Representing monads. In Conference Record of POPL’94:
21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, Oregon, USA, January 17-21, 1994, pages
446–457, 1994. . URL http://doi.acm.org/10.1145/174675.
178047.

[5] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In Proceedings of the ACM SIG-
PLAN’93 Conference on Programming Language Design and Imple-
mentation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993,
pages 237–247, 1993. . URL http://doi.acm.org/10.1145/
155090.155113.

[6] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types, volume 7.
Cambridge University Press Cambridge, 1989.

[7] A. Kennedy. Compiling with continuations, continued. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007,
pages 177–190, 2007. . URL http://doi.acm.org/10.1145/
1291151.1291179.

[8] S. Lindley. Normalisation by evaluation in the compilation of typed
functional programming languages. PhD thesis, University of Ed-
inburgh, College of Science and Engineering, School of Informatics,
2005.

[9] S. Peyton Jones and A. Santos. A transformation-based optimiser
for Haskell. Science of Computer Programming, 32(1-3):3–47, Sept.
1998.

[10] S. L. Peyton Jones, A. Tolmach, and T. Hoare. Playing by
the rules: rewriting as a practical optimisation technique in GHC.
In 2001 Haskell Workshop. ACM SIGPLAN, September 2001.
URL http://research.microsoft.com/apps/pubs/default.
aspx?id=74064.

[11] J. C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3-4):233–248, 1993.

[12] A. Sabry and M. Felleisen. Reasoning about programs in continuation-
passing style. In LISP and Functional Programming, pages 288–298,
1992. . URL http://doi.acm.org/10.1145/141471.141563.

[13] G. L. Steele, Jr. RABBIT: A compiler for SCHEME. Technical
Report AITR-474, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1978.

[14] H. Thielecke. Comparing control constructs by double-barrelled CPS.
Higher-Order and Symbolic Computation, 15(2-3):141–160, 2002. .
URL http://dx.doi.org/10.1023/A:1020887011500.

3 2016/6/11

http://dx.doi.org/10.1007/11431664_9
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/174675.178047
http://doi.acm.org/10.1145/174675.178047
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/155090.155113
http://doi.acm.org/10.1145/1291151.1291179
http://doi.acm.org/10.1145/1291151.1291179
http://research.microsoft.com/apps/pubs/default.aspx?id=74064
http://research.microsoft.com/apps/pubs/default.aspx?id=74064
http://doi.acm.org/10.1145/141471.141563
http://dx.doi.org/10.1023/A:1020887011500

