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Abstract

Modern programming languages have effects and mix multiple calling conven-
tions, and their core calculi should too. We characterize calling conventions
by their “substitution discipline” that says what variables stand for, and de-
sign calculi for mixing disciplines in a single program. Building on variations
of the reducibility candidates method, including biorthogonality and symmet-
ric candidates which are both specialized for one discipline, we develop a sin-
gle uniform framework for strong normalization encompassing call-by-name,
call-by-value, call-by-need, call-by-push-value, non-deterministic disciplines,
and any others satisfying some simple criteria. We explicate commonalities of
previous methods and show they are special cases of the uniform framework
and they extend to multi-discipline programs.

Keywords: Strong normalization, calling convention, biorthogonality,
symmetric candidates, sequent calculus

1. Introduction

Picking a programming language means choosing not just a syntax and
feature set, but also a calling convention. As Peyton Jones (2009) says:

These days, the strict/lazy decision isn’t a straight either/or
choice. For example, a lazy language has ways of stating “use
call-by-value here,” and even if you were to say “Oh, the lan-
guage should be call by value,” you would want ways to achieve
laziness anyway. Any successor language to Haskell will have sup-
port for both strict and lazy functions. So the question then is:
“How do you mix them together?”
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This question is as important in language theory as it is in practice: different
programming languages merit different calculi. For example, just βη ax-
ioms are enough for equality of call-by-name functions, but more axioms are
needed to complete the theory of call-by-value (Sabry and Felleisen, 1992;
Herbelin and Zimmermann, 2009). More drastically, call-by-need requires
some extra rules even for computing answers. If we then want to reflect the
reality of programming languages that mix calling conventions, we need a
theory that mixes them, too. Again, the question is: “How?”

Polarized logic (Zeilberger, 2009; Munch-Maccagnoni, 2013) and call-by-
push-value (Levy, 2001) partially answers the question of how to mix calling
conventions by dividing types into two groups: positive and negative. The
positive types, like sums, follow the call-by-value discipline whereas the neg-
ative types, like functions, follow the call-by-name regime. Here, by contrast,
we do connect calling conventions with types, but allow each type constructor
to build a type of any convention; for example we can have both a call-by-
value or a call-by-need function type. This more closely reflects practice
where OCaml has call-by-value functions and Haskell call-by-need sums.

Even though each calculus for each convention is different, they can be
all be seen as variations on the same idea. As pioneered by Ronchi Della
Rocca and Paolini (2004), calculi for different calling conventions can be
summarized as instances of a common calculus parameterized by a substitu-
tion discipline (Downen and Ariola, 2014) specifying what might be substi-
tuted for identifiers. Call-by-name and -value can then share the same βη
axioms, (λx.M) V = M{V/x} and λx.V x = V ; what changes is the notion
of value V . Call-by-name says that V can be any term, and call-by-value
is more restrictive. Each of the above mentioned three calling conventions
can be uniformly represented, as well as more exotic ones like the dual to
call-by-need (Ariola et al., 2011) and the non-deterministic evaluation of the
symmetric λ-calculus (Barbanera and Berardi, 1994).

Abstracting away the differences across languages enables us to study
properties of those languages in a uniform way. In this paper, we focus on
strong normalization. In a reduction theory, a term is strongly normalizing
if it is the start of no infinite reduction sequence. Of course, for untyped
languages, it is unlikely to be the case that all terms are strongly normal-
izing, but many typed calculi can be shown to have the property that all
their well-typed terms are strongly normalizing. For example, the untyped
λ-calculus has non-normalizing terms like (λx.xx)(λx.xx) which reduces to it-
self, causing the infinite reduction (λx.xx)(λx.xx)→ (λx.xx)(λx.xx)→ . . . ,
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but the simply typed λ-calculus rejects all such terms as ill-typed. Currently,
however, there are separate proofs of strong normalization for calculi of dif-
ferent substitution disciplines. Here, we show one common proof for all of
them by articulating the essential properties of the substitution discipline
that guarantees strong normalization. We build on a technique previously
used for studying a language of mixed induction and co-induction (Downen
et al., 2015), which is based on both biorthogonal (Girard, 1987; Krivine,
2005; Pitts, 2000) and symmetric candidate (Barbanera and Berardi, 1994)
models, and extend it to accommodate multi-discipline languages. Further,
the more refined version of the technique presented here lets us formally un-
derstand the relationship between orthogonality and symmetric candidates:
biorthogonality models are subsumed as a special case of our uniform model.

The orthogonality-based family of methods require that we not only think
of how to create values of a type, but also how to use them. This inevitably
leads to the invention of abstract-machine-like constructs to represent a rei-
fied environment or context of a program fragment (Krivine, 2005; Pitts,
2000). Instead of going about an ad hoc reification, we base our proof on
a classical sequent calculus which is already an abstract machine language
(Section 2) that is well-suited to mixing disciplines (Section 3).

This work is based on (Downen et al., 2018) which uses a sequent calculus
with impredicative polymorphism based on (Downen et al. (2015), see Sec-
tion 1.1 for comparison) and is extended with multiple disciplines—which are
given as a parameter to the system and not fixed a priori—in the sense that
different calling conventions can be used in the same program (Sections 2
and 3). From that starting point, we:

• (Section 4) Define and explore the parametric, multi-discipline sequent
calculus with functions and polymorphism. We isolate the well-disciplined
sub-syntax, which is more lax than full typing, for the purpose of defin-
ing the untyped reduction theory. We also define a collection of five par-
ticular disciplines corresponding to five important calling conventions—
call-by-name, -value, -need, -co-need, and non-deterministic—for which
we give a type-safe operational semantics.

As it covers the main properties of our calculus other than strong nor-
malization, this, together with the previous chapters may be of interest
even to readers who would like to skip the more technical developments
to follow.
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• (Section 5) Analyze the properties of rewriting theories for the mul-
tidiscipline sequent calculus, giving particular focus to the notion of
top reduction—an important subset of standard reduction—as a way
to generically prove a partial standardization result and identify how
reduction relates to the priorities between producers and consumers,
which we characterize by the reduction’s charge.

• (Section 6) Introduce the primary setting of our model: pre-candidates ;
objects which represent both the terms and co-terms of a type, but
without the full safety properties. Already, pre-candidates support use-
ful properties, including two separate complete lattices: one of straight-
forward containment and the other corresponding to behavioral sub-
typing (Liskov, 1987). We also generalize the notion of orthogonality
(Krivine, 2005) to allow for different predicates on the two sides of a
pre-candidate, and the usual properties of orthogonality generalize to
pre-orthogonality.

• (Section 7) Demonstrate a generalization of the traditional biorthogo-
nality technique (Girard, 1987; Pitts, 2000; Mellies and Vouillon, 2005)
which goes beyond modeling just rewriting theories with call-by-name
or call-by-value calling conventions, but can also handle other calling
conventions like call-by-need and its dual as well. The key is to con-
struct reducibility candidates (i.e., well-behaved models of types) with
a built-in “value-restriction” property (Munch-Maccagnoni, 2009) and
to use three layers of orthogonality. As it turns out, both of these
additions simplify away for the call-by-name and call-by-value calling
conventions, so the more general construction boils down to the usual
biorthogonality construction for these special cases.

• (Section 8) Move beyond modeling just confluent reduction to non-
confluent reduction by focusing on fixed point constructions. We re-
cast the symmetric candidates technique (Barbanera and Berardi, 1994;
Lengrand and Miquel, 2008) to be less syntactic and more semantic,
based not on special syntactic forms but instead on the behavior of
terms and co-terms under charged reduction. Our use of pre-candidates
demonstrates how the fixed-point solution of symmetric candidates is
based on the relationship between pre-orthogonality and behavioral
subtyping. And the added generality to the model lets us formalize the
relationship between reducibility candidates and symmetric candidates:
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the former is wholly subsumed by the latter, and the two concepts are
identical for confluent reduction.

• (Section 9) Provide a model of strong normalization in the sequent
calculus which is defined uniformly for any collection of admissible dis-
ciplines. Each of the five important disciplines above are admissible,
which proves strong normalization for a general calculus mixing the
most common calling conventions.

1.1. Relation to Previous Work

The proof of strong normalization in this paper is a substantial refinement
of the proof of strong normalization which appeared in (Downen et al., 2015).
That paper already treated discipline as a parameter of the theory, but did
not allow for mixing disciplines. As such, the present proof accounts for the
possibility that by combining two strongly normalizing disciplines we might
break normalization. It does so by ensuring sufficient safety in terms of when
disciplines will be mixed and ensuring that each discipline is still admissible
when used in combination (see Property 3 – note that this property is non-
trivial for the combination of call-by-need and its dual as their syntactic
definitions overlap).

Beyond this difference in application, the model has been notably im-
proved over our previous work. David and Nour (2005) answered the ques-
tion of “why the usual [orthogonality based] candidates of reducibility do
not work” for the non-deterministic discipline (u), but, from our perspec-
tive, left open the question of why they do work for deterministic disciplines.
We believe the proof in this paper finally answers that question.

In our previous work we used symmetric candidates, with its infinite
fixed point construction, to build modified orthogonality based candidates.
That was sufficient for building candidates and showing normalization, but
it provided little understanding of what was going on and we could not say
much about what those candidates looked like. Here, our analysis is finer,
and we are able to formally relate reducibility candidates with symmetric
candidates, showing that the former are the unique manifestation of the
later when dealing with deterministic strategies. We now know that “the
usual candidates of reducibility” method works for deterministic strategies
because it is the symmetric candidates method—for deterministic disciplines
possible candidates are unique, and when they exist must be given by or-
thogonals. The fixed point construction of symmetric candidates ensures
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existence of candidates for all disciplines, deterministic or not, whereas the
direct orthogonal construction gives an immediate definition of candidates.
This difference between the two forms of candidates—which we now know
are closely related—allows for a more thorough understanding of the impact
of disciplines on advanced type structures like intersection and union types
(Downen and Ariola, 2019).

Numerous improvements in our model construction, small on their own
perhaps but quite substantial in totality, enable this finer analysis. Our no-
tion of “pre-candidate” now considers only strongly normalizing (co-)terms
to begin with, simplifying many arguments. We also now use simpler and
weaker commutation lemmas, suitable for a wider variety of systems. More
fundamentally, we now have separate notions of “reducibility candidate” and
“symmetric candidate” and rigorously relate the two. The former is now
required to contain its own value orthogonal, a requirement absent in our
previous work and necessary to the uniqueness results. The notion of “head”
in our prior work has been eliminated, replaced by a more general satura-
tion condition, while the idea of “forward closure” of a pre-candidate is now
mostly handled by the orthogonality machinery (it is still used in the state-
ment of Lemma 7 which is a technical device to get to Corollary 1). Most
importantly, we have now gained a detailed analysis of deterministic normal-
ization, allowing us to state and prove Theorem 3: symmetric candidates are
always reducibility candidates, and the two notions coincide for deterministic
disciplines.

Concurrently with the previous version of this article being presented,
Miquey and Herbelin (2018) gave an orthogonality based proof of strong
normalization for a call-by-need calculus with control, complementing the
symmetric candidates based proof of strong normalization of call-by-need
from our earlier work. While their system is somewhat different from ours in
that their call-by-need makes use of an environment, it is notable that they
used a similar sequence of three applications of the (restricted) orthogonal
as appears in this work. As the present paper shows such candidates to
be unique (at least for our calculus) we gain the insight that this triple
orthogonal construction produces exactly the same model as the symmetric
candidates technique.
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2. A Linguistic Approach to Abstract Machines

One of the most basic ways of evaluating a λ-calculus term is by repeated
β reduction. For instance, if we have the term (λx.λy.x + y) 1 2 we can
compute a value in three steps:

(λx.λy.x+ y) 1 2→ (λy.1 + y) 2→ 1 + 2→ 3

However, even in this simple example we can observe one frustration with
the β-reduction model from the perspective of implementation: reductions
might not always occur at the “top” of the term, but can be buried somewhere
within it. In the very first reduction step above, the redex (λx.λy.x + y) 1
subjected to β reduction happens inside of the outermost application context
� 2, where � stands for the position of the sub-term within the context. As
such, performing evaluation by β reduction requires a search for the next
redex within a term, which must be specified as part of an implementation
of the evaluator.

An abstract machine gives a lower-level description of evaluation by inter-
weaving search and reduction together. To keep track of its position within
the term, a machine does not evaluate terms directly but rather larger con-
figurations. Here, the configurations we use are called commands (denoted
by the metavariable c) which consist of a term (denoted by v) together with
a syntactic representation of its context called co-term (denoted by e). One
abstract machine in this style is the Krivine machine (Krivine, 2007), which
requires only two rules:

〈v v′||e〉 → 〈v||v′ • e〉 〈λx.v||v′ • e〉 → 〈v{v′/x}||e〉

The first rule pushes the argument of a function call onto the call-stack.
In other words, evaluating an application of the form v v′ in a surrounding
context e consists of pushing the argument v′ on top of e and then evaluating
v in the larger context. The second rule implements β reduction by popping
the top argument off of a call-stack and plugging it into the formal parameter
of a λ-abstraction. In the Krivine machine style, our previous example can
be computed as follows, where the term is evaluated in a context named α:

〈(λx.λy.x+ y) 1 2||α〉 → 〈(λx.λy.x+ y) 1||2 • α〉
→ 〈λx.λy.x+ y||1 • 2 • α〉
→ 〈λy.1 + y||2 • α〉 → 〈1 + 2||α〉 → 〈3||α〉
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So the machine returns the same result, 3, to the surrounding context as was
achieved by β reduction. The Krivine machine thus seems to represent a
lower level implementation, one closer to actual computation on a physical
machine using call-stacks. Moreover, exploring the laws of the Krivine ma-
chine suggests additional possibilities. We see in the Krivine machine that
there are actually two different syntactic constructs for invoking a function:
both configurations 〈�||v • e〉 and 〈� v||e〉 do exactly the same thing as the
second is rewritten into the first. That is, both call-stack formation and λ
calculus application are two ways of expressing the same concept. It is thus
natural to wonder if the two can be unified.

We are accustomed to having variables stand for an unknown value and
then having the possibility to bind these variables to known terms later. The
same can be done with respect to contexts, now that they are embodied with
a syntactic representation in the form of co-terms. Already in the example
above we refer to α (called a co-variable) as a generic placeholder for the
surrounding context of evaluation. Abstracting over co-variables like α is the
role of the µ-abstraction, written as µα.c, which is reduced like so:

〈µα.c||e〉 → c{e/α}

The above says that when the term µα.c is evaluated in a context e, then the
next step is to execute the command c with α bound to e. µ-abstractions
unify the two forms of function calls by representing function application
in terms of call-stack formation. For example, the above λ-calculus term
(λx.λy.x+y) 1 2 can be rewritten to avoid function application altogether as
µβ.〈λx.λy.x+ y||1 • 2 • β〉. This term behaves the same as the original one:

〈µβ.〈λx.λy.x+ y||1 • 2 • β〉||α〉 → 〈λx.λy.x+ y||1 • 2 • α〉

As such, the application term v v′ becomes syntactic sugar for µα.〈v||v′ • α〉.
However, the presence of µ-abstraction makes the language more expres-

sive than λ-calculus because a µ has the ability to erase its context when the
abstracted co-variable is never used:

〈µβ.〈λx.λy.x+ y||α〉||1 • 2 • α〉 → 〈λx.λy.x+ y||α〉

A µ-abstraction can also duplicate its context by using the abstracted co-variable
more than once. Indeed, terms such as µα.c create a control effect much like
those found in many programming languages. In particular, µ-abstractions
are similar to the callcc operator from Scheme.
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So far, this analysis gives rise to a language for representing abstract
machines implementing call-by-name evaluation. But what about call-by-
value evaluation, where arguments are evaluated before resolving a function
application, giving rise to evaluation contexts of the form V � (where V
denotes a value: a variable or a λ-abstraction) in addition to � v? The call-
by-value version of the above Krivine machine would use an extra co-term
V ◦ e corresponding to the additional form of evaluation context (first apply
V to the input and return the result to e), as well as the reduction rules:

〈v v′||e〉 → 〈v||v′ • e〉
〈V ||v′ • e〉 → 〈v′||V ◦ e〉

〈V ′||(λx.v) ◦ e〉 → 〈v{V ′/x}||e〉

The first rule pushes an argument onto the call-stack as before. The second
rule switches the attention of the machine from the function, represented by
V , to the argument v′ beginning evaluation of the argument by placing it on
the left-hand side of the command. The third rule implements β reduction
slightly differently from before, since the function is now found in the co-term
after evaluation due to the second rule. The call-by-value evaluation of our
example above becomes:

〈(λx.λy.x+ y) 1 2||α〉 →→ 〈λx.λy.x+ y||1 • 2 • α〉
→ 〈1||(λx.λy.x+ y) ◦ (2 • α)〉
→ 〈λy.1 + y||2 • α〉
→ 〈2||(λy.1 + y) ◦ α〉 → 〈1 + 2||α〉 → 〈3||α〉

Besides changing the language of co-terms to account for a different evalua-
tion strategy, this presentation of call-by-value machines suffers even worse
redundancy: there are three different syntactic representations of function
invocation—〈(λx.v) v′||e〉, 〈λx.v||v′ • e〉, and 〈v′||λx.v ◦ e〉—all of which are
equivalent to one another. In the interest of eliminating redundancy, we
should again wonder if all notions of function invocation can be distilled
down to a single primitive operation with the help of some other generic
binding constructs, like µ. Indeed, call-by-value can employ the dual of µ-
abstractions, known as µ̃-abstractions (Curien and Herbelin, 2000), to write
everything with call-stacks. Symmetric to a µ, the µ̃-abstraction µ̃x.c is a
co-term that binds its input to the variable x and then runs the command c:

〈v||µ̃x.c〉 → c{v/x}
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Just like µ-abstractions can be used to write a λ-calculus application with
a call-stack, so too can µ̃-abstractions be used to write the extra call-by-
value evaluation context with the primitive form of call-stack: v ◦ e becomes
syntactic sugar for µ̃x.〈v||x • e〉. Expanding this notation, the second rule is:

〈V ||v′ • e〉 → 〈v′||µ̃x.〈V ||x ◦ e〉〉
which names the argument for evaluation, and the call-by-value implemen-
tation of β reduction simplifies to the call-by-name one:

〈V ′||(λx.v) ◦ e〉 = 〈V ′||µ̃y.〈λx.v||y • e〉〉 → 〈λx.v||V ′ • e〉 → 〈v{V ′/x}||e〉

A calculus for abstract machines These basic constructs—functions and
call-stacks, variables and co-variables, µ- and µ̃-abstractions—define a gen-
eral calculus for reasoning about abstract machines (both call-by-value and
call-by-name) known as system L (Munch-Maccagnoni, 2009). System L is a
lower-level machine-like calculus, in that no search is needed for evaluation:
reduction can always take place at the “top” of a command. But system L
also supports high-level reasoning like the λ-calculus, in that it is still sound
to perform reductions anywhere within a command, which correspond to out-
of-order simplifications and optimizations. Also like the λ-calculus, system
L can be seen as either an untyped or typed language. Since there are two
different forms of variables—both ordinary variables and co-variables—there
are two typing environments: Γ = x1 : A1, x2 : A2, . . . , xn : An for track-
ing the types of free variables and ∆ = α1 : A1, α2 : A2, . . . , αn : An for
tracking the types of free co-variables. Since there are three different forms
of expressions—commands, terms, and co-terms—there are three different
typing judgements. Terms returning a result of type A in environments Γ
and ∆ are typed as Γ ` v : A | ∆. Co-terms expecting an input of type A in
environments Γ and ∆ are typed as Γ | e : A ` ∆. And commands that are
capable of running in environments Γ and ∆ are typed as c : (Γ ` ∆). With
this notation in mind, the typing rules for the L-style language of abstract
machines are:

Γ, x:A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | v • e : A→ B ` ∆

Γ, x:A ` x : A | ∆
c : (Γ ` α:A,∆)

Γ ` µα.c : A | ∆
c : (Γ, x:A ` ∆)

Γ | µ̃x.c : A ` ∆ Γ | α:A ` α : A,∆

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v||e〉 : (Γ ` ∆)
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Amazingly, in the same way that the typing rules for λ-calculus correspond
to the rules of natural deduction, the above typing rules correspond to the
sequent calculus (Curien and Herbelin, 2000)! The typing rules for call-stacks
and commands correspond to the logical rules for implication (on the left)
and cut. λ-abstractions are typed as usual, the two axioms correspond to
(co-)variables, and the µµ̃ abstractions focus on an assumption or conclusion.

3. Substitution Disciplines: Resolving the Dillema

But there is a problem that rears its head when we try to compute; the
fundamental critical pair of classical logic between the µ- and µ̃-abstractions
(Curien and Herbelin, 2000):

c1{µ̃x.c2/α} ← 〈µα.c1||µ̃x.c2〉 → c2{µα.c1/x}.

The choice between these two reductions takes us down two separate paths.
In the worst case, x and α are never used and c1 and c2 are unrelated to one
another, which means that a single command can reduce to two completely
unrelated results. This critical pair can be resolved by always preferring one
reduction or the other, giving two different calculi. Favoring µ by always
taking the left path gives the call-by-value calculus, whereas favoring µ̃ by
always taking the right path gives the call-by-name calculus.

As observed by Plotkin (1975), different calling conventions require differ-
ent calculi: the traditional λ-calculus is suitable for reasoning about Haskell
programs, as the call-by-value λ-calculus is for OCaml programs. But de-
notational semantics seems to capture the essential difference between call-
by-name and call-by-value more generally: the difference is reflected in the
Denotable domain (Turbak et al., 2008). A call-by-name variable can denote
any expressible value, including errors or divergence, whereas a call-by-value
variable can only denotes “regular” values.

This idea can be represented syntactically by characterizing the calculus
in two parts (Ronchi Della Rocca and Paolini, 2004; Downen and Ariola,
2014); one part is common to different parameter passing techniques and
the other only differs in one aspect: what can be substituted for a variable
and co-variable. We refer to what variables and co-variables stand for as a
substitution discipline. We call a term that can be substituted for a vari-
able a value, and call a co-term that can be substituted for a co-variable
a co-value. Thus, the call-by-name calculus is defined by saying that every
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term is a substitutable value, while the set of co-values is restricted to the
bare minimum necessary to not get stuck. Symmetrically, the call-by-value
calculus is formed by saying that every co-term is a co-value, and restricting
values down to the bare minimum to avoid getting stuck. Moreover, call-by-
name and -value are not the only disciplines expressible in this framework.
For instance, call-by-need can be characterized by the notion of substitution
discipline as well (Ariola et al., 2011).

Mixing Disciplines This framework allows for a characterization of the
differences between calling conventions as a resolution to the above funda-
mental critical pair, which can be further distilled into a discipline on substi-
tution. Why, then, should only choose one discipline globally for the entire
program? Often times such a restriction can be quite limiting. As observed
in (Peyton Jones and Launchbury, 1991), some functions like λx.x + x will
always evaluate their argument eagerly even in a lazy language, and as such
the extra costs associated with lazy evaluation should be avoided when lazi-
ness is irrelevant. Thus, it would be more practical to let the programmer,
or at least the compiler during code generation and optimization, choose
which discipline is appropriate for each juncture. In other words, we want a
multi-discipline language that incorporates many calling conventions.

The obvious way to signal the intended discipline is to just annotate each
command with symbols such as v (for call-by-value) and n (for call-by-name),
which resolves the fundamental critical pair on a per-command basis. So in
the above example, we could write the call-by-value choice as

〈µα.c1|v|µ̃x.c2〉 → c1{µ̃x.c2/α}

and the call-by-name choice as

〈µα.c1|n|µ̃x.c2〉 → c2{µα.c1/x}.

Unfortunately, just marking commands is not enough, as it only pushes the
issue of the critical pair one step away. The problem is that we could lie
about what a variable or co-variable denotes by using it in a context that
violates the contract of its binding. For example, the same critical pair is
simulated as follows:

〈µα.c1|v|µ̃y.c2〉 ← 〈µα.c1|n|µ̃x. 〈x|v|µ̃y.c2〉〉 → 〈µα.c1|n|µ̃x.c2{x/y}〉 .

By reducing the top redex and plugging in the computation µα.c1 for the
n variable x, on the left we end up with a v command that will prioritize

12



the term. But by instead performing the inner redex, we end up with the
equivalent n command that will prioritize the co-term.

So a multi-discipline sequent calculus cannot just annotate commands,
but must ensure that the chosen discipline of variables and co-variables re-
mains consistent throughout their lifetime. To make this choice apparent in
the syntax, variables and co-variables must have a statically-inferable disci-
pline which we accomplish with annotations, e.g., xv and αn. Furthermore,
terms and co-terms in general also much have a statically-inferable discipline,
since it is sometimes necessary to introduce a new binding during reduction.
For example, recall the second rule of the call-by-value abstract machine in
Section 2, which corresponds to naming the argument of a function with a
µ̃-abstraction. This naming step is necessary to avoid getting stuck during
a call-by-value function call: call-by-value β reduction does not apply to
〈λx.v||v′ • e〉 when v′ is not a value. This is done by lifting v′ out of the
call-stack (Downen and Ariola, 2014):

〈λxv.v||v′ • e〉 → 〈λxv.v||µ̃x.〈v′||µ̃y.〈x||y • e〉〉〉.

However, to annotate α and y above, we would need to know what the
intended disciplines of λxv.v and e are.

4. A Parametric, Multi-Discipline Sequent Calculus

We now formalize the core calculus for studying multi-discipline reduc-
tion in the presence of control. For simplicity we limit to a few key type
formers: functions and parametric polymorphism. These features are found
in most real functional programming languages, are enough both to write
a variety of interesting programs, and expose the main challenges faced in
strong normalization proofs.

4.1. Syntax

As in the abstract machine language of Section 2, we will build on top
of a calculus comprised of terms (“producers” v), co-terms (“consumers” e),
and commands (“executables” c) as shown in Fig. 1. The first thing to notice
is a change of syntax for functions. Instead of λ-abstractions, functions are
written by pattern-matching on their context: a call-stack of the form x • α.
This change of notation is syntactic in nature—note that λx.v is equivalent to
µ[x α].〈v||α〉—which helps to emphasize the role of functions as responders
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A,B ∈ Type ::= a || A→ B || ∀a.A
v ∈ Term ::= x || µα.c || µ[x • α].c || µ[a • α].c

e ∈ CoTerm ::= α || µ̃x.c || v • e || A • e
c ∈ Command ::= 〈v||e〉

Figure 1: Syntax of an undisciplined, polymorphic sequent calculus.

r, s, t ∈ Kind ::= n || v || . . . x ::= xs α ::= αs a ::= as

As, Bs ∈ Types ::= as || A s→ B || ∀sa.A A,B ∈ Type ::= As

vs ∈ Terms ::= xs || µαs.c || µ[x s α].c || µ[a s α].c

es ∈ CoTerms ::= αs || µ̃xs.c || v s e || A s e

c ∈ Command ::= 〈vs||es〉 v ∈ Term ::= vs e ∈ CoTerm ::= es

Figure 2: Syntax of a multi-discipline, polymorphic sequent calculus.

to call-stacks. As in system F, polymorphism is expressed in terms of type
abstraction and specialization. Note that these constructs are analogous to
functions, except that the parameter is a type, not a value.

However, we are not just interested in representing a single, language-wide
evaluation mechanism, but instead a program-specific choice of discipline.
And as discussed previously in Section 3, it is too easy in the raw syntax
to mislead about this choice. Therefore, the full syntax of our calculus has
terms and co-terms that are explicitly divided by their discipline, notated
by a finite collection of symbols denoted by the metavariable s, so that vs
produces an s value and es consumes an s value. This distinction shows up
explicitly in annotations on variables and co-variables, where xs is a mem-
ber of (only) Terms and similarly αs is in CoTerms. A bold (co-)variable
denotes an annotated (co-)variable, respectively, where the annotation could
be any discipline. Commands, in contrast, do not have an outwardly-visible
discipline because they do not produce or consume anything, but instead are
only well-formed if they have an internally-consistent discipline shared by a
producer and consumer cooperating together. To ensure that every term and
co-term belong to exactly one syntactic category Terms and CoTerms, the
formation of and pattern matching a call stack dot is also annotated with a
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〈µαs.c||Es〉 �µ c{Es/α
s} µαs.〈vs||αs〉 �ηµ vs

〈Vs||µ̃xs.c〉 �µ̃ c{Vs/xs} µ̃xs.〈xs||es〉 �ηµ̃ es
〈µ[xt s αr].c||Vt s Er〉 �β→ c{Vt/xt, Er/α

r}
〈µ[at s αr].c||At s Er〉 �β∀ c{At/a

t, Er/α
r}

vt s e �ς→ µ̃xs.〈vt||µ̃yt.〈xs||yt s e〉〉 (6 ∃Vt,vt = Vt)

V s er �ς→ µ̃xs.〈µβr.〈xs||V s βr〉||er〉 ( 6 ∃Er,er = Er)

A s er �ς∀ µ̃xs.〈µβr.〈xs||A s βr〉||er〉 ( 6 ∃Er,er = Er)

c � c′

C[c]→ C[c′]

e � e′

C[e]→ C[e′]

v � v′

C[v]→ C[v′]

Figure 3: Rewriting theory for multi-discipline, polymorphic sequent calculus.

discipline symbol. That way, it is immediately apparent that v s e is an s
co-term and µ[x s α].c is an s term.

For example, a wholly call-by-value function can be written as µ[xv v αv].c
that matches a call-stack of the form vv v ev. The v annotating the brack-
ets tells us the discipline used for computing the function itself, whereas the
annotations on the abstracted (co-)variables tell us the discipline of the ar-
gument and result. Replacing v with n gives instead wholly call-by-name
functions, but other more interesting combinations are also possible. The
functions found in call-by-push-value (Levy, 2001) and polarized languages
(Zeilberger, 2009) would have the form µ[xv n αn].c and vv n en, with a call-
by-value argument and call-by-name function and result.

4.2. Parameterized Reduction Theory

The reduction theory, denoted by → shown in Fig. 3, is the compatible
closure of the top-level reduction relation �. Here the metavariable C ranges
over any context such that filling the whole with an object of the appropriate
sort is well formed. Whereas � only applies to the top of some expression,
→ can apply anywhere inside of it. Further, we use →→ for the reflexive,
transitive closure of →. The reduction rules in � are given names which
we write in subscript. We also use subscripts on the → rule to denote the
restriction to the rules of the same name, for instance→β→ refers to the com-
patible closure of the relation �β→ . At times we will use multiple subscripts
to denote collections of reductions, as in �β→,β∀ for the union of �β→ and
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�β∀ . When a relation such as � or → is used without a subscript it refers
to the union over all of the rules in Fig. 3.

The reduction theory is parameterized by a set of specific discipline sym-
bols equipped with an associated subset of terms called values and co-terms
called co-values (denoted by Vs and Es, respectively, for each discipline sym-
bol s). As with (co-)terms, we use the plain metavariables V and E to refer
to the union of values and co-values for every s. Disciplines are not just re-
strictive but also enabling in the case of the ς rules (originally due to Wadler
(2003)) that lift unevaluated components out of call-stacks to be computed,
so there is no “largest” reduction theory that subsumes all others.

4.3. The Values and Co-Values of Five Important Disciplines

We can illustrate the use of disciplines by giving interpretations of some
specific discipline symbols: the call-by-value (v), -name (n), -need (lv for
“lazy value” (Ariola et al., 2011)), -co-need (ln for “lazy name”) and non-
deterministic (u, implemented for instance by Barbanera and Berardi (1994))
disciplines are defined by the values and co-values in Fig. 4. These five
particular disciplines are chosen for illustration for different reasons. Call-
by-value and call-by-name reduction are touchstones in the theory of com-
puter science, and appear pervasively in the study of programming language
semantics. Call-by-need is a very pragmatic evaluation strategy that ex-
presses on-demand computation while preserving the correct performance
characteristics of typical algorithms. In contrast, call-by-co-need and non-
deterministic evaluation are more curiosities that arise from the study of
logic, where co-need is the logical dual of need, and non-deterministic evalu-
ation is the extreme edge-case that corresponds to the original cut elimination
procedure for the sequent calculus due to Gentzen (1935).

4.4. A Multi-Discipline Operational Semantics

Due to the machine-like nature of the sequent calculus, the operational
semantics is straightforward to define; at least for a specified choice of dis-
ciplines. The operational semantics for the above combined v, n, lv, ln,
and u instance of the parametric, multi-discipline sequent calculus is shown
in Fig. 5, and allows for applications of the reduction rules on commands
inside Dl contexts from Fig. 4 and on the co-term of a command to perform
ς-reduction. In other words, standard reduction can usually proceed at the
top of a command except in the case where there are delayed lazy lv or
ln bindings, in which case standard reduction computes under the binders.
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r, s, t ::= n || v || lv || ln || u
V ::= Vs

Vu ::= vu

Vv ::= xv || µ[x v α].c || µ[a v α].c

Vn ::= vn

E ::= Es

Eu ::= eu

Ev ::= ev

En ::= αn || V n E || A n E

Vlv ::= xlv || µ[x lv α].c || µ[a lv α].c

Elv ::= αlv || µ̃xlv. Dl[〈xlv||Elv〉] || V lv E || A lv E

Vln ::= xln || µ[x ln α].c || µ[a ln α].c || µαln. Dl[〈Vln||αln〉]
Eln ::= αln || V ln E || A ln E

Dl ::= � || 〈vlv||µ̃ylv. Dl〉 || 〈µαln. Dl||eln〉

Figure 4: (Co-)values for call-by-name (n), call-by-value (v), call-by-need (lv), call-by-
co-need (ln) and nondeterministic (u) disciplines.

c �µ,µ̃,β c′

c 7→µ,µ̃,β c
′

e �ς e′

〈V ||e〉 7→ς 〈V ||e′〉
elv �ςlv e′lv

〈vlv||elv〉 7→ςlv
〈vlv||e′lv〉

c 7→ c′

Dl[c] 7→ Dl[c
′]

Figure 5: A multi-discipline operational semantics for call-by-name, call-by-value, call-by-
need, call-by-co-need, and nondeterministic evaluation.

This helps explain how lv and ln implement laziness. For example, when we
have a command of the form 〈µαlv.c1||µ̃xlv.c2〉, the standard thing to do is to
delay µαlv.c1 and work on c2. Then only once c2 has been reduced down to
Dl[〈xlv||Elv〉] is x demanded, since only then is µ̃xlv.Dl[〈xlv||Elv〉] a co-value,
and only a co-value can be substituted for αlv in order to run c1 to get the
result of the µ-abstraction. Thus, we see that the standard reduction in lv
reduces a co-term until it corresponds to a forcing context, before switching
to reduce the term which is now demanded.

4.5. Typing

As a generalization of polarity, types belong to one of several kinds, each
associated with a discipline. The kind of a type is specified by its top con-

structor, for example A
v→ B and A

lv→ B are types of call-by-value and
call-by-need, respectively. Type variables range over a specific kind denoting
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Γ,x : A `Θ x : A | ∆ VarR
Γ | α : A `Θ α : A,∆

VarL

c : (Γ `Θ α : A,∆)

Γ `Θ µα.c : A | ∆ ActR
c : (Γ,x : A `Θ ∆)

Γ | µ̃x.c : A `Θ ∆
ActL

Γ `Θ v : A | ∆ Γ | e : A `Θ ∆

〈v||e〉 : (Γ `Θ ∆)
Cut

Γ `Θ v : A | ∆ Γ | e : B `Θ ∆

Γ | v s e : A
s→ B `Θ ∆

→L
c : (Γ,x : A `Θ α : B,∆)

Γ `Θ µ[x s α].c : A
s→ B | ∆

→R

Γ | e : B{At/a
t} `Θ ∆

Γ | At s e : ∀sat.B `Θ ∆
∀L c : (Γ `Θ,a α : B,∆)

Γ `Θ µ[a s α].c : ∀sa.B | ∆ ∀R

Figure 6: Type system for the multi-discipline, polymorphic sequent calculus.

the discipline of (co-)terms they specify, and the polymorphic quantifier ∀s
must choose a specific kind of type to abstract over.

The typing rules for the calculus are given in Fig. 6. There are some
criteria for when sequents are well formed: (1) identifiers (a, x, α) in Θ, Γ,
and ∆ are all unique, (2) the disciplines of (co-)variables must match that of
their type, as in xs : As and αs : As, and (3) in the sequent Γ `Θ v : A | ∆,
all the free type variables of Γ, ∆, v, and A are included in Θ, and similarly
for Γ | e : A `Θ ∆ and c : (Γ `Θ ∆). Only derivations where all sequents are
well formed are considered proofs. Note that this imposes the standard side-
condition on the right ∀ rule that the abstracted type variable in the premise
is not free in the conclusion (i.e., that at /∈ FV (Γ `Θ ∆)). Well-formedness
also ensures that in the cut and the left rule for ∀, the free variables of the
cut and instantiated type are contained in Θ.

4.6. Type Safety

In order to properly state type safety, we also need to say when a com-
mand is done computing. However, in the calculus we’ve considered here,
there is no basic type, like booleans or numbers for example, for which we
can observe the result. In their stead, we can use type variables as our ob-
servables since they might stand in for a basic type. Note that type variables
can only possibly classify generic (co-)terms like (co-)variables or µ- and µ̃-
abstractions, which means that we only get to observe free (co-)variables

18



that stand in for results. While in the λ-calculus we usually only run closed
terms, this change of attitude goes along with the basic fact of logical consis-
tency in the sequent calculus: there is no such thing as a well-typed, closed
command. Therefore, we can say that a combined n-v-lv-ln-u-disciplined
sequent calculus command c is done exactly when c = Dl[〈x||α〉] and neither
x nor α are bound by the context Dl. We can now sketch out type safety in
terms of progress and preservation.

Theorem 1 (Progress). Given a multi-discipline sequent calculus command
c : (x : a, . . . `Θ α : b, . . . ), either c is done or c 7→ c′ for some c′.

Proof. To begin, we generalize the set of done commands to include all paused
commands of the formDl[〈V ||E〉] such at least one of V or E is a (co-)variable,
none of which are bound by Dl. Progress is then a special case of the three
following lemmas

1. If c : (Γ `Θ ∆) then either c is paused or c 7→.

2. If Γ | e : Alv `Θ ∆ then either e is a co-value of lv, e �ς , or e = µ̃xlv. c
such that c is paused or c 7→.

3. If Γ `Θ v : Aln | ∆ then either v is a value of ln, or v = µαln. c such
that c is paused or c 7→.

because every paused command of type c : (x : a, . . . `Θ α : b, . . . ) must
be done. These lemmas can be fully shown by mutual induction the given
typing derivation. Briefly here, consider the possible counter-examples where
we might have a typed command c that is not paused and yet has no standard
reduction, c 67→. The three main potential causes for getting stuck are:

• Ill-typed pairs: where we have one of the many configurations that are
stuck on a type error. These consist of confusing functions with poly-
morphism, as in 〈µ[x s β].c||A s E〉 and also where there is a discipline
miss-matched β-reduction in a nonetheless well-disciplined command,
as in 〈µ[x s β].c||V r E〉 when s 6= r. Both of these cases are ruled out

by type checking—either because the type A1
s→ A2 can never match

with ∀sa.B, or because A
s→ B can only match with A

r→ B when
s = r—so they cannot happen.
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• Insufficient substitution: where we have a well-typed command that
almost has a standard µ- or µ̃-redex, but the bound (co-)term is not
yet a (co-)value. For example, we could have a command of the form
c = 〈vlv||µ̃xlv. c′〉 where vlv is not a value. In this case, by the second
lemma above, it must be that µ̃xlv. c′ is a value, in which case c 7→µ

since the non-value vlv must be a µ-abstraction, or c′ 7→ c′′, in which
case 〈vlv||µ̃xlv. c′〉 7→ 〈vlv||µ̃xlv. c′′〉.

• Insufficient lifting: where we have a well-typed command that almost
has a standard β-redex, except the components of the call stack is
not a co-value. For example, we could have a command of the form
c = 〈v||v′ s e′〉 where one of v′ is not a value or e′ is not a co-value. If
v is a value, then c 7→ς→ for any s. If v is not, the step depends on s:

– s = n: is impossible, since every term of n is a value of n.

– s = v: v must be a µ-abstraction, so that c 7→µ .

– s = lv: c 7→ς→ anyway even though v is not a value of lv.

– s = ln: by the third lemma above, v must be a µ-abstraction
µαln. c′ such that c′ 7→ c′′ or c′ is paused. If c′ 7→ c′′, then the
whole command 〈µαln. c′||v′ s e′〉 7→ 〈µαln. c′′||v′ s e′〉. If c′ is paused,
the only non-value form of v is when v = µαln. Dl[〈V ||E〉] where
E 6= α. In this case, the whole command c would be paused.

Therefore, there is no way to find a well-typed, unpaused command that
cannot take a step.

Theorem 2 (Preservation). In the multi-discipline sequent calculus

1) if c : (Γ `Θ ∆) and c→ c′ then c′ : (Γ `Θ ∆),

2) if Γ `Θ v : A | ∆ and v → v′ then Γ `Θ v′ : A | ∆, and

3) if Γ | e : A `Θ ∆ and e→ e′ then Γ | e′ : A `Θ ∆.

Proof. By induction on the given typing derivation and cases on the top-level
reduction rules where they occur. This relies on three standard substitution
lemmas that state that substituting (1) a value for a variable of the same
type, (2) a co-value for a co-variable of the same type, and (3) a type for a
type variable of the same kind preserves typing.
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c �µ,µ̃,β c′

c µ,µ̃,β c
′

e �ς e′
〈V ||e〉 ς 〈V ||e′〉

Figure 7: The top-level reduction relation.

5. Properties of Multi-Discipline Rewriting

In order to build a proof of strong normalization for our classical sequent
calculus, we will need to know some facts about disciplines and their associ-
ated reduction theories. In summary, we will need to (1) identify and classify
the set of “important” reductions (here called “top” reductions) on which to
base our model of normalization, (2) show that top reductions are indeed
necessary for computation, in that they can always be performed first before
any other “internal” reductions, and (3) characterize what general proper-
ties of disciplines are needed for them to be “admissible” for use in strongly
normalizing reduction.

5.1. Charged Top Reduction

A common aspect of proving normalization is to identify a subset of re-
ductions that are important to check for the purpose of normalization: if
those reductions can lead to an infinite reduction sequence then all hope is
lost. Usually in the λ-calculus, these important reductions are the standard
reductions that make up an operational semantics. But since we are work-
ing in the sequent calculus, we already have a notion of “main” reduction
that is immediately apparent in the syntax: the reductions that occur at the
“top” of a command. We define top reduction ( ) on commands as shown
in Fig. 7, which applies a primary rewriting rule either to the command itself
(in the case of a µ, µ̃, or β reduction), or to its immediate sub-co-term (in
the case of a ς reduction). We use  ? to denote the reflexive closure of  .

Notice that top reduction in the sequent calculus does not necessarily
correspond to the standard reductions of an operational semantics. For ex-
ample, consider again the operational semantics for the five important disci-
plines that was given in Fig. 5. The standard reduction relation includes all
the reductions allowed in top reduction, but it also allows for a more gen-
eral application of a call-by-need ςlv reduction, as well as reductions inside
of a delayed Dl context. So every top reduction is a standard reduction,
but not vice versa. As a consequence, top reduction is type safe (i.e., it
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doesn’t get stuck on well-typed commands) for disciplines like call-by-name
(n), call-by-value (v), and non-deterministic evaluation (u), but not for ones
like call-by-need (lv), and -by-co-need (ln). However, the advantage of con-
sidering top reduction is that it’s definition does not depend deeply on the
chosen disciplines: it is just reduction of the top-level command or it’s imme-
diate sub-expressions. And as it turns out, while top reduction might not be
enough for type-safe computation, it is enough to characterize the important
steps of strong normalization for any substitution discipline.

Top reduction is useful for analyzing strong normalization because it re-
duces the number of counter-examples of normalization we need to consider.
In particular, given a non-normalizing command made up of a strongly nor-
malizing term and co-term, it must be possible to find some reduction se-
quence that passes through a top reduction.

Lemma 1. If v and e are strongly normalizing but 〈v||e〉 is not strongly
normalizing, then there are some v′, e′, and c′ such that v →→ v′, e →→ e′,
〈v||e〉 →→ 〈v′||e′〉 7→ c′, and c′ is not strongly normalizing.

Proof. This lemma relies on the fact that every reduction on commands is
either a top reduction, or internal to one side of the command. That is, if
〈v||e〉 → c′, then one of the following must be true:

(i) c c′,

(ii) v → v′ for some v′ and c′ = 〈v′||e〉, or

(iii) e→ e′ for some e′ and c′ = 〈v||e′〉.

So consider an infinite reduction sequence starting with 〈v||e〉 (〈v||e〉 → c1 →
c2 → . . . ) where each reduction step must be one of the above three cases. It
is impossible that there is an infinite number of reductions of the form (ii) or
(iii), because both v and e are strongly normalizing. Therefore, there must
be a step of case (i) in the infinite reduction sequence, which can be found
by induction on the longest number of reductions starting from v and e:

• If 〈v||e〉 c1, then the result holds by reflexivity.

• If v → v′ and c1 = 〈v′||e〉 then the result holds by the inductive hypoth-
esis, where the longest number of reductions starting from v′ is strictly
less than that of v.
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• If e → e′ and c1 = 〈v||e′〉 then the result holds analogously to the
previous case.

In order to analyze the behavior of top reduction, we will assign a charge—
positive (+), negative (−), or neutral (0)—to individual reduction rules which
characterize their important semantic properties.

Definition 1 (Charged Reduction). We assign the following charges to the
top-level reduction relation (for each discipline s):

• A positive reduction uses the rule µs, wherein the term is solely respon-
sible for the result of the reduction. We write this charge as + which
denotes µs reduction only.

• A negative reduction uses either the rule µs, ς
→
s , or ς∀s , wherein the

co-term is solely responsible for the result of the reduction. We write
this charge as − which denotes the union of µ̃sς

→
s ς
∀
s reduction.

• A neutral reduction uses either the rule β→s or β∀s , wherein both the
term and co-term must cooperate with one another to take a step. We
write this charge as 0 which denotes the union of β→s β

∀
s reduction.

A charged reduction step is just a standard reduction limited to a subset of
reduction rules. So + denotes µ and − denotes µ̃ς→ς∀ . Combinations
of charges are just the union of the underlying rules, so +0 denotes µβ→β∀

and  +−0 (which is also written as just  ) denotes  µµ̃β→ς→ .

Intuitively, neutrally charged reductions require cooperation of the term
and co-term. Positively charged reductions allow the term to take over con-
trol of the command in order to simplify itself. And dually, negatively charged
reductions are allow the co-term to take over control of the command.

By classifying the charge of a top reduction, we can make some statements
about what behavior is (or is not) possible independently of any specific
substitution discipline. In particular, certain combinations of charges lead to
a guaranteed deterministic top reduction relation no matter the definition of
values and co-values.

Property 1. When taken on their own, each of the charged head reduction
relations,  0,  +, and  −, are deterministic regardless of the discipline
(e.g., c1  0 c  0 c2 implies that c1 = c2), as are the combined  +0 and
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 −0 top reduction relations. However, the combined  +− top reduction
relation may be non-deterministic depending on the discipline (i.e., it may be
that c1  + c − c2 and c1 6= c2).

Therefore, the question of the possibility of “essential” non-determinism
which goes comes down to the interaction between positive and negative
reductions.

Definition 2. A discipline s is deterministic if the  +− reduction relation
is deterministic on all commands of the form 〈vs||es〉.

Note that of course the general reduction relation (c → c′) is not de-
terministic, because any sub-expression may be reduced. However, general
reduction is still confluent for deterministic disciplines (Downen, 2017). In
contrast, reduction may be non-confluent for non-deterministic disciplines,
which is the essential difficulty posed by the critical pair between positively-
and negatively-charged reductions. For example, the specific u discipline
leads to non-confluent reduction, and is thus non-deterministic, but the other
four of the five important disciplines are deterministic.

Property 2. The specific v, n, lv, and ln disciplines are all deterministic.
The u discipline is non-deterministic.

5.2. Admissible Disciplines

Our proof of strong normalization is parameterized by a collection of
discipline symbols and their interpretation. However, not every set of values
and co-values make for a sensible substitution discipline. In particular, there
are two important properties—being stable and focalizing—that are required
of admissible disciplines that ensure strong normalization.

Definition 3. A discipline is

(i) stable when (co-)values are closed under reduction and substitution,

(ii) focalizing when at least all (1) variables, µ[x s α].c, and µ[a s α].c are
values, and (2) co-variables, V s E, and A s E, are co-values, and

(iii) admissible when it is stable and focalizing.
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The focalizing property of disciplines corresponds to focalization in logic
(Curien and Munch-Maccagnoni, 2010)—each criterion comes from a focused
inference rule for typing (co-)values. As a special, each of the five specific
disciplines from Section 4 are all examples of admissible disciplines.

Property 3. The specific n, v, lv, ln, and u disciplines are collectively
admissible.

Proof. Let us first introduce a notion of a hygienic decomposition of a com-
mand c into Dl[c

′] as one where c′ is of the form 〈Vln||αln〉 with αln is not
bound in c or 〈xlv||Elv〉 where xlv is not bound in c. Because we assume
the Barendregt convention, we can verify that hygienic decompositions are,
when they exist, unique by induction on the size of c.

For all the disciplines, focalization is immediate and stability follows im-
mediately by induction for all but call-by-need and its dual. To show stability
for call-by-need and its dual we use the fact about hygienic decompositions
above.

Observe that values and co-values are closed under substitution, which
follows from the fact that Dl contexts are also closed under substitution of
(co-)values for (co-)values. All that remains is showing that the reduction
rules do not turn (co-)values into non-(co-)values. To do so, observe all at
once the four facts that:

(i) if E → e′ then e′ is a co-value,

(ii) if V → v′ then v′ is a value,

(iii) if Dl[〈xlv||Elv〉] is a hygienic decomposition and Dl[〈xlv||Elv〉]→ c then
there is a hygienic decomposition c = D′l[〈xlv||E ′lv〉], and

(iv) if Dl[〈Vln||αln〉] is a hygienic decomposition and Dl[〈Vln||αln〉]→ c then
there is a hygienic decomposition c = D′l[〈V ′ln||αln〉].

follows by mutual induction on the syntax of commands and (co-)terms. The
interesting case of fact 1 are the ς rules, but ς only applies when one of the
two components of a call stack are not (co-)values, and so either ς cannot
apply, the entire call stack was not originally a (co-)value of n, lv, or ln, or
the call stack is trivially a (co-)value of v or u before and after reduction.
The interesting case of facts 3 and 4 is

〈V ||µ̃ylv. Dl[〈xlv||E〉]〉 → Dl[〈xlv||E〉]{ylv/V }
= Dl{ylv/V }[〈xlv||E{ylv/V }〉]
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(and its dual) whereDl[〈xlv||E〉] is a hygienic decomposition, which follows by
the fact that Dl contexts are closed under substitution and because xlv 6= ylv

by the definition of hygienic decomposition.

These are the only facts we use about the collection of substitution dis-
ciplines in order to prove strong normalization: any other properties that
are needed for normalization can be derived from stability and focalization
above. For example, focalization tells us something about the top reduction
relation: every top-reducible command is made up of a value (for positive re-
duction), a co-value (for negative reduction), or both (for neutral reduction).

Property 4. For any focalizing discipline s,

(i) if 〈vs||es〉 + c then es is a co-value of s,

(ii) if 〈vs||es〉 − c then vs is a value of s, and

(iii) if 〈vs||es〉 0 c then vs is a value and es is a co-value of s.

Proof. The facts about positive and negative reduction are guaranteed by
the respective reduction rules. The fact about neutral reduction follows from
the assumption that s is focalizing, which means that the call stack and
abstraction taking part in a β→ or β∀ reduction must be a co-value and
value, respectively.

Our proof of strong normalization works uniformly for any collection of
admissible disciplines. As we present the proof that follows, we assume some
admissible disciplines have been chosen, which could include any combination
of the five disciplines presented above, or some other admissible disciplines
of interest.

5.3. Commuting Top and Internal Reduction

The top reductions are important in the sense that they can always be
performed first, before any other internal reductions. This kind of property is
quite useful for proving strong normalization. For example, studying strong
normalization for the λ-calculus we can use standardization to help when
demonstrating one of the primary lemmas: that if v′ and v{v′/x} are both
strongly normalizing, then (λx.v) v′ is as well. This works because, no matter
what reductions might be happening internally inside v and v′, we can always

26



rearrange the reduction sequence so that the standard reduction (λx.v) v′ 7→
v{v′/x} happens first, meaning all reduction sequences must normalize.

Since we will be focusing on top reduction, a subset of standard reduc-
tion, we will need to use a similar, partial standardization property about
the reduction theory of the sequent calculus. This property says that top
reduction commutes with all other internal reductions. With one step of an
internal reduction and one top reduction (of a particular charge p), the cases
for commutation of appear as follows.

Lemma 2. For any stable discipline s and charge p ∈ {0,+,−}:

(i) If vs → v′s and 〈vs||es〉  p c then 〈v′s||es〉  ?
p c′ ←← c for some c′.

Moreover, if p ∈ {0,−} then 〈v′s||es〉 p c
′←← c.

(ii) If es → e′s and 〈vs||es〉  p c then 〈vs||e′s〉  ?
p c′ ←← c for some c′.

Moreover, if p ∈ {0,+} then 〈vs||e′s〉 p c
′←← c.

In pictures, any spans of these two forms can be completed the following
commuting diagram:

Given v → v′,

〈v||e〉 c

〈v′||e〉 c′

p

?p

and given e→ e′,

〈v||e〉 c

〈v||e′〉 c′

p

?p

Proof. By cases on the possible reductions. Stability of s is required to
ensure that internal reductions do not accidentally turn a (co-)value into
a non-(co-)value, thereby blocking the top reduction. Therefore, internal
reductions inside a sub-expression of a top reduction commutes immediately.
For example, given Vs → V ′s and 〈Vs||µ̃xs.c〉  − c{Vs/xs}, the pair comes
back together as

〈V ′s ||µ̃xs.c〉 − c{V ′s/xs}←← c{Vs/xs}

The remaining interesting cases occur when an internal reduction on ei-
ther side of a command accidentally ends up simulating the top reduction.
This can happen with the ηµ and ηµ̃ reductions, which can appear as a µ or µ̃
top reduction, respectively. For example, given µαs.〈vs||αs〉 →ηµ vs, we could
have the following pair of identical reductions (one internal and one top):

〈vs||Es〉 ←ηµ 〈µαs.〈vs||αs〉||Es〉 + 〈vs||Es〉
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In this case, the two end up at the same command, so that 〈vs||Es〉  ?
+

〈vs||Es〉 ←← 〈vs||Es〉 by reflexivity.
Another possibility lies with the ς reductions, which both apply to a

co-term directly as well as in a top reduction, and the two possibilities coin-
cide exactly. For example, given vt s e→ς µ̃xs.〈vt||µ̃yt.〈xs||ys s e〉〉 we then we
would have a similar pair of identical reductions.

The last possibility is when a (co-)term is reduced to a (co-)value, which
makes a ς reduction no longer necessary (and indeed, no longer possible).
For example, if we have some non-value vt such that vt → Vt, there is the
pair of reductions: 〈V ′s ||Vt s e〉 ← 〈V ′s ||vt s e〉 ς 〈V ′s ||µ̃xs.〈vt||µ̃yt.〈xs||ys s e〉〉〉.
These two commands come back together as follows:

〈V ′s ||µ̃xs.〈vt||µ̃yt.〈xs||ys s e〉〉〉 → 〈V ′s ||µ̃xs.〈Vt||µ̃yt.〈xs||ys s e〉〉〉 →→µ̃ 〈V ′s ||Vt s e〉

In the aggregate, we can commute many internal reductions on both sides
of a command with a top-level reduction.

Lemma 3 (Commutation). Given any p ∈ {0,+,−}, if v →→ v′, e→→ e′, and
〈v||e〉 ?

p c, then 〈v′||e′〉 ?
p c
′←← c for some c′. Moreover, if v →→ v′, e→→ e′,

and 〈v||e〉  0 c, then 〈v′||e′〉  0 c
′ ←← c for some c′. In other words, any

spans of these forms can be completed by the following commuting diagrams:

Given v →→ v′ and e→→ e′,

〈v||e〉 c

〈v′||e′〉 c′

?p

?p

and

〈v||e〉 c

〈v′||e′〉 c′

0

0

Proof. By induction on the two reduction paths, v →→ v′ and e →→ e′, ap-
plying Lemma 2 at each step. The stronger commutation for neutral top
reductions ( 0) holds due to the fact that no internal reduction on either
side of a command can eliminate a neutral top reduction.

6. Pre-Candidates: A Two-Sided Interpretation of Types

While some properties, like type safety, are straightforward enough to
prove directly (Wright and Felleisen, 1994), other properties, like strong nor-
malization, resist a direct approach. The problem with proving strong nor-
malization is that just inducting over syntax or typing derivations is far too
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weak. Instead, the standard practice uses a more indirect approach based
on the idea behind Tait’s method (Tait, 1967) and reducibility candidates
(Girard et al., 1989): set up an interpretation for types that serves as a way-
point between syntax and safety. The domain in which types are interpreted
should encompass all programs of that type (adequacy) and also fit inside
the intended candidate property (safety).

Syntax
Adequacy

=⇒ Interpretation
Safety
=⇒ Candidate

When interpreting types, the definition is usually designed with safety in
mind: interpretations contain only safe programs by construction, but their
adequacy needs to be justified. Instead, we will orient ourselves the other way
in the style of symmetric candidates (Barbanera and Berardi, 1994), where
the interpretations for types are designed with adequacy in mind: interpre-
tations contain all the necessary well-typed programs by construction, but
their safety needs to be justified. But that means we need to consider things
which are not yet known to be safe, and so are not a candidate interpretation
for any type. Therefore, we work in the larger and more lax domain of pre-
candidates which encompasses all possible candidates but does not impose
the necessary safety conditions.

Syntax
Adequacy

=⇒ Interpretation
Safety
=⇒ Candidate

Relax
=⇒ Pre-Candidate

Since we will be discussing multiple versions of “candidates,” it’s useful to
begin one step earlier at the domain of “pre-candidates,” which outlines the
overall shape of candidates but stops short of enforcing the crucial properties
that ensure they are well-behaved. Before getting into proper candidates, we
can already explore some useful general properties about the domain of pre-
candidates as a whole.

6.1. The Two Lattices of Pre-Candidates

In the λ-calculus, types only describe terms. But in the sequent calculus,
types describe both terms and co-terms. For this reason, pre-candidates
are dual objects containing both a term side and a co-term side, which is
expressive enough to encompass both roles of types in the sequent calculus.

Definition 4 (Pre-candidate). A pre-candidate (of s) is a pairA = (A+,A−)
of a set (A+) of strongly normalizing terms (of discipline s) and a set (A−)
of strongly normalizing co-terms (also of s). As notation on a pre-candidate
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A, we write A+ for the first component of A (the set of terms), A− for the
second component of A (the set of co-terms), v ∈ A as shorthand for v ∈ A+

and e ∈ A as shorthand for e ∈ A−.
Two important pre-candidates the “biggest” pre-candidateWs of all strongly

normalizing terms and co-terms of a particular discipline s, and the smaller
pre-candidate Vs of only strongly normalizing values and co-values.

Ws , ({vs | vs is strongly normalizing}, {es | es is strongly normalizing})
Vs , ({vs ∈ Ws | vs is a value of s}, {es ∈ Ws | es is a co-value of s})

Since pre-candidates are effectively two-sided objects, there is more than
one way to relate them compared with just a single set, since the two sides can
be either in agreement or opposed to one another. The first relation is just
straightforward containment where both sides are treated the same which we
call “refinement,” which corresponds to the ordinary subset relation. The
second relation has the two sides contrary to one another which we call
“subtyping,” since it corresponds to the notion of behavioral subtyping on
candidates. The idea behind subtyping A ≤ B is that every value of A is
also a valid value of B, but also dually every observation of B can be used
on values of A.

Definition 5 (Subtyping and Refinement). The refinement (v) and subtyp-
ing (≤) orders on pre-candidates A = (A+,A−) and B = (B+,B−) is:

A v B , (A+ ⊆ B+) ∧ (A− ⊆ B−)

A ≤ B , (A+ ⊆ B+) ∧ (A− ⊇ B−)

When A v B we say “A refines B” (dually, “B extends A”) and when A ≤ B
we say that “A is a subtype of B” (dually, “B is a supertype of A”). Note
that refinement between pre-candidates says that one is wholly contained
within the other, whereas subtyping order is inverted on negative side of pre-
candidates. Both orders form separate complete lattices which come with
their own notions of union and intersections (written t and u for refinement
and ∨ and ∧ for subtyping), defined as:

A t B , (A+ ∪ B+,A− ∪ B−) A u B , (A+ ∩ B+,A− ∩ B−)

A ∨ B , (A+ ∪ B+,A− ∩ B−) A ∧ B , (A+ ∩ B+,A− ∪ B−)
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Property 5. The union and intersection operations of both refinement and
subtyping are monotonic in each argument with respect to each ordering. For
example, the notable case is, for any pre-candidates A, B, and C of s:

if A ≤ B then C t A ≤ C t B.

Proof. This follows from analogous properties of the underlying set opera-
tions. That is, if A ⊂ B then C ∪ A ⊂ C ∪B and C ∩ A ⊂ C ∩B.

6.2. Orthogonality

The sequent calculus has more than just terms and co-terms; it also has
commands which represent execution states. What role do they play in the
domain of pre-candidates? They are the key variable in the most fundamental
operation on pre-candidates: orthogonality. The idea behind orthogonality
is to take a set of especially well-behaved commands—for example, the set
of all strongly normalizing commands—and use those commands as a test
for generating well-behaved partners. That is, given some co-terms as a
set of observations, orthogonality can give back all terms that are strongly
normalizing under each of those observations. Or dually, given some terms as
a set of results, we can give back all co-terms that are strongly normalizing
when given each those results.

Definition 6 (Orthogonality). Given any set of commands P , the s orthog-
onality operation is defined dually on any set of s-terms (A+) and set of
s-co-terms (A−) as:

A+P , {e ∈ Ws | ∀v ∈ A+, 〈v||e〉 ∈ P}
A−P , {v ∈ Ws | ∀e ∈ A−, 〈v||e〉 ∈ P}

The fact that the appropriate Ws is chosen to match the (co-)terms of A+

and A− ensures that the above commands are well-disciplined. Since pre-
candidates are two-sided objects, we can lift these two operations indepen-
dently onto pre-candidates to get the s pre-orthogonality operation, which
uses different sets of commands (P and Q) for each side as follows:

(A+,A−)(P,Q) , (A−P ,A+Q)

Pre-orthogonality is asymmetric, in that both sides of a pre-candidate may be
treated differently. In turn, the s orthogonality operation imposes symmetry
on pre-orthogonality, and is defined as follows:

AP , A(P,P) = (A−P ,A+P)
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The most important application of (pre-)orthogonality is with respect to
the set of all strongly normalizing commands, which we write as ‚:

‚ , {c | c is strongly normalizing}

So that the traditional notation A‚ refers to the pre-candidate which in-
cludes all normalizing (co-)terms which form normalizing commands with the
(co-)terms of A. Inlining the definitions, A‚ is the usual of pair operations—
for converting a set of terms to a set of co-terms, and vice-versa—which is:

A‚ = ({v ∈ Ws | ∀e ∈ A, 〈v||e〉 ∈ ‚}, {e ∈ Ws | ∀v ∈ A, 〈v||e〉 ∈ ‚})
It follows then the following facts hold about a pre-candidate A exactly when
it is a fixed point of this instance of orthogonality (A = A‚):

(i) (Derived from A v A‚): For all v, e ∈ A, 〈v||e〉 ∈ ‚.

(ii) (Derived from A‚ v A): If 〈v||e〉 ∈ ‚ for all e ∈ A then it must be
that v ∈ A. Dually, if 〈v||e〉 ∈ ‚ for all v ∈ A then e ∈ A.

The first fact represents a form of “soundness” about A, where every com-
bination of terms and co-terms drawn from A is safe (i.e., is a strongly-
normalizing command in ‚). The second fact represents a form of “com-
pleteness” about A, where every such “safe” (co-)term is already included in
A. The importance of fixed points for deriving these kinds of soundness and
completeness properties will be a recurring theme in our development.

Besides the obvious connection between subtyping of pre-candidates and
subtyping of types, one reason motivating the two separate orderings is that
they each have a very different relationship with the fundamental orthogo-
nality operation. In particular, refinement order exhibits the following usual
standard properties that arise in the study of biorthogonality (Girard, 1987;
Pitts, 2000; Mellies and Vouillon, 2005) and classical realizability (Krivine,
2005; Munch-Maccagnoni, 2009), whereas subtyping order is stable under
orthogonality. First, note how orthogonality interacts with the two different
pre-candidate relationships.

Property 6. For any sets of commands P and Q, and any pre-candidates
A and B of s:

(i) Extension: If P ′ ⊆ P and Q′ ⊆ Q then A(P ′,Q′) v A(P,Q)
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(ii) Antitonicity (a.k.a contrapositive): If A v B then B(P,Q) v A(P,Q)

(iii) Monotonicity: If A ≤ B then A(P,Q) ≤ B(P,Q)

Furthermore all four union (t, ∨) and intersection (u, ∧) operations are
monotonic in both arguments with respect to both orders. For example, two
of the most important instances are, for any A ≤ B and constant C:

A u C ≤ B u C A t C ≤ B u C

Proof. Suppose the pre-candidates are A = (A+,A−) and B = (B+,B−).

(i) Let v ∈ A+P ′ . For any e ∈ A−, we know that 〈v||e〉 ∈ P ′ ⊆ P , and thus
v ∈ A+P as well. Similarly, every e ∈ A−Q′ is also in A−Q.

(ii) Let v ∈ B+P . For any e ∈ A− it must be that e ∈ B− as well (due to
A v B), which forces 〈v||e〉 ∈ P and thus v ∈ A+P . Similarly, it must
be that B−Q ⊆ A−Q.

(iii) The assumption (A+,A−) ≤ (B+,B−) can be equivalently restated as
(A+,B−) v (B+,A−). From the previous point (antitonicity), we know

(A−P ,B+Q) = (B+,A−)(P,Q) v (A+,B−)(P,Q) = (B−P ,A+Q)

which is equivalent to

(A−P ,A+Q) = (A+,A−)(P,Q) ≤ (B+,B−)(P,Q) = (B−P ,B+Q)

The monotonicity of the intersection and union operations follows from mono-
tonicity of their underlying set operations. That is, for any sets A ⊆ B and
C, both A ∪ C ⊆ B ∪ C and A ∩ C ⊆ B ∩ C hold.

In addition to these basic ordering properties, pre-orthogonality also gen-
eralizes the standard properties of orthogonality in terms of refinement of
pre-candidates.

Property 7. The following properties hold for any sets of commands P and
Q, and any pre-candidates A and B of s:

(i) Double orthogonal introduction: A v A(P,Q)(Q,P)

(ii) Triple orthogonal elimination: A(P,Q)(Q,P)(P,Q) = A(P,Q)
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(iii) Orthogonal of union: A(P,Q) u B(P,Q) = (A t B)(P,Q)

(iv) Orthogonal of intersection: A(P,Q) t B(P,Q) v (A u B)(P,Q)

However, it is not necessarily the case that the reverse orders A(P,Q)(Q,P) v A
or (A u B)(P,Q) v A(P,Q) t B(P,Q) hold.

Proof. Suppose the pre-candidates are A = (A+,A−) and B = (B+,B−).

(i) Note that A(P,Q)(Q,P) = (A−P ,A+Q)(Q,P) = (A+QQ,A−PP). Suppose
v ∈ A+ and e ∈ A+Q. By definition of A+Q we know that 〈v||e〉 ∈ Q,
which forces v ∈ A+QQ as well. Similarly, A− ⊆ A−PP .

(ii) First, we know that A v A(P,Q)(Q,P) by double orthogonal introduction
on A, and so A(P,Q)(Q,P)(P,Q) v A(P,Q) by contrapositive. Second, we
know that A(P,Q) v A(P,Q)(Q,P)(P,Q) by double orthogonal introduction
on A(P,Q) with P and Q reversed. Therefore, the two are equal.

(iii) Since both A,B v A t B, we know that (A t B)(P,Q) v A(P,Q),B(P,Q)

by contrapositive, and so (A t B)(P,Q) v A(P,Q) u B(P,Q). Now, let v ∈
A(P,Q)uB(P,Q) and e ∈ AtB. In either case e ∈ A or e ∈ B, it must be
that 〈v||e〉 ∈ P , so v ∈ (AtB)P as well. I.e., A−P∩B−P ⊆ (A−∪B−)P .
The same holds for co-terms, so that A+Q ∩ B+Q ⊆ (A+ ∪ B+)Q.

(iv) Since bothA,B w AuB, we know that both (AuB)(P,Q) w A(P,Q),B(P,Q)

by contrapositive, and so (A u B)(P,Q) w A(P,Q) t B(P,Q).

Intuitively, these properties can be read as laws of logical negation if we
read A‚ as “not A”, A v B as “A implies B, t as “or,” and u as “and.” By
instantiating the above properties to the traditional orthogonality operation,
we have the correspondences of A v A‚‚ to double negation introduction,
A‚‚‚ = A‚ to triple negation elimination, and both A‚ uB‚ = (AtB)‚
andA‚tB‚ v (AuB)‚ to three of the fourth De Morgan laws. Additionally,
the fact that double negation elimination (A‚‚ v A) and the fourth De
Morgan law ((A u B)‚ v A‚ t B‚) do not necessarily holds means that
orthogonality is a model of intuitionistic, rather than classical, negation.

Finally, we note that orthogonality has the ability to transfer some impor-
tant facts about the main safety property of interest—the set ‚ of strongly
normalizing commands—to pre-candidates generated from it. For example,
closure under reduction is a crucial fact about strong normalization which is
needed for proofs based on reducibility candidates.
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Definition 7. A set of commands, P , is closed under reduction when c ∈ P
and c →→ c′ implies c′ ∈ P . Likewise, a pre-candidate A is closed under
reduction when both v ∈ A and v →→ v′ implies v′ ∈ A and e ∈ A and
e→→ e′ implies e′ ∈ A.

Property 8. If a set of commands P is closed under reduction, so is AP .

Proof. Let v ∈ A and v →→ v′. For any e ∈ A, we know that 〈v||e〉 ∈ P ,
〈v||e〉 →→ 〈v′||e〉, and therefore 〈v′||e〉 ∈ P by assumption. Therefore v′ ∈ A
as well. A is closed under reduction of co-terms for the same reason.

7. Reducibility Candidates for Confluent Normalization

For our first, simpler, approach to candidate semantics for types, we
will look to the reducibility candidates and biorthogonality methods which
are appropriate for deterministic evaluation (e.g., like the call-by-value v
and call-by-name n disciplines). The main key any reducibility candidates
proof is a form of “expansion” lemma, which says that things which step
to something good must have been good to begin with (i.e., “goodness” is
closed under  expansion). For our specific setting, this expansion lemma
takes the following form, which holds under the assumption that the chosen
discipline s is deterministic.

Lemma 4 (Deterministic Expansion). Given any deterministic admissible
s, if v, e ∈ Ws (i.e., v and e are normalizing) and 〈v||e〉 c ∈ ‚ (i.e., 〈v||e〉
steps to c which is normalizing) then 〈v||e〉 ∈ ‚ (i.e., 〈v||e〉 is normalizing).

Proof. We will show that 〈v||e〉 must be strongly normalizing by assuming
there is an infinite reduction sequence starting from 〈v||e〉 and demonstrating
a contradiction.1 By Lemma 1, any infinite reduction sequence starting from
〈v||e〉 must begin as

〈v||e〉 →→ 〈v′||e′〉 c′ where v →→ v′ and e→→ e′

and c′ has a further infinite reduction sequence. And by applying Lemma 3
to 〈v′||e′〉←←〈v||e〉 c, we know there is some c′′ such that 〈v′||e′〉 ? c′′←← c.

1In fact, this lemma is a consequence of the later Lemma 7, but we show the self-
contained proof here for the purpose of illustration.
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Because c′  〈v′||e′〉 ? c′′, it follows that c′′  ? c′ from the assumption that
s is deterministic, which leads to c→→ c′′  ? c′. But this is a contradiction,
since strong normalization is closed under reduction, and yet the normalizing
c reduces to the non-normalizing c′.

7.1. Defining Reducibility Candidates

However, disciplined reduction has a serious consequence on this form
of expansion. For example, consider the challenge of justifying in the call-
by-value v discipline that a µ̃-abstraction µ̃x.c is a co-term of some A. We
would like to argue behaviorally about how µ̃x.c behaves when paired with
terms of A. That is, we might know that for any Vv ∈ A,

〈Vv||µ̃x.c〉 µ̃v c{Vv/x} ∈ ‚
or in other words, µ̃x.c forms a strongly-normalizing command after one
step when paired with any v-value of A. But not every term is a v-value,
so we can’t use µ̃v-reduction to say anything about the other terms of A!
For this reason, we need to consider the (co-)value restriction as part of the
definition of reducibility candidates, corresponding to Munch-Maccagnoni’s
(2009) notion of generation.

Definition 8 (Restriction). The restriction on a pre-candidate A of s by
another pre-candidate B of s is defined as: AB , A u B. Note that AB v A
by definition. The (co-)value restriction on a pre-candiate A of s, written
as AVs , is a special case of restriction on A by the pre-candidate of all S-
(co-)values Vs. When the discipline s can be inferred from context, we will
leave it implicit and write the (co-)value restriction as just AV .

Definition 9 (Reducibility Candidate). A reducibility candidate (of s) is
a pre-candidate A (of s) such that AV‚ v A v A‚. In other words, a
reducibility candidate A of s is any pre-candidate of s such that the following
two properties hold:

(i) Soundness (A v A‚): For all v, e ∈ A, the command 〈v||e〉 is strongly
normalizing.

(ii) Completeness (AV‚ v A): If v is strongly normalizing as well as 〈v||E〉
for all E ∈ AV , then v ∈ A. Dually, if e is strongly normalizing as well
as 〈V ||e〉 for all V ∈ AV , then e ∈ A.
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We denote the set of all reducibility candidates of s by CRs.

Intuitively, the soundness property of reducibility candidates ensures that
they don’t have too many (co-)terms, which justifies that the Cut rule is
sound, whereas the completeness property ensures that there are enough
(co-)terms, which justifies the generic ActR and ActL rules of every type along
with type-specific inference rules. The fact that the completeness require-
ment of reducibility candidates (AV‚ v A) only requires checking potential
members against the values or co-values of that candidate means that the
standard reduction rules are enough to justify membership of complex com-
putations by expansion. Returning back to the above example, if we know
that A is a reducibility candidate and c{V/x} ∈ ‚ for any V ∈ A, then we
can conclude from expansion (Proposition 4) and completeness (Definition 9)
that µ̃x.c ∈ A.

It turns out there is another equivalent definition of reducibility candi-
dates, based on the standard properties of orthogonality from Proposition 7:
reducibility candidates are exactly the fixed points of (co-)value-restricted
orthogonality.

Property 9. For any deterministic admissible discipline s and pre-candidate
A of s, A is a reducibility candidate of s if and only if A = AV‚.

Fixed points play a prominent role later in Section 8, where we give a
proof of this property.

7.2. Constructing Reducibility Candidates

So far, we have said what reducibility candidates are, but not yet how to
make one of them. Here are two dual ways (one Pos itively-oriented and the
other Negatively-oriented) to construct a reducibility candidate of s from a
set of s-values (C) or s-co-values (O), along with a common operation R(−)
for generating a complete reducibility candidate from a sound pre-candidate
A made up of s-(co-)values.

Pos(C) , (C,C‚)V‚V Neg(O) , (O‚, O)V‚V R(A) , A‚

Inlining the definitions, we can see that the two dual ways of constructing a
reducibility candidate appears to use three applications of orthogonality:

R(Pos(C)) = (C,C‚V)‚V‚ = (C‚V‚, C‚V‚V‚)

R(Neg(O)) = (O‚V , O)‚V‚ = (O‚V‚V‚, O‚V‚)
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Why three, instead of just the usual two? Because the correctness of this
construction relies on a weaker version of the triple orthogonality elimination
property in order to accommodate the (co-)value restriction.

Property 10. For any sets of commands P and Q, and any pre-candidates
A and B of s:

(i) Restricted orthogonal: A(P,Q) v AB(P,Q)

(ii) Restricted double orthogonal introduction: AB v AB(P,Q)B(Q,P)B

(iii) Restricted triple orthogonal elimination: AB(P,Q)B(P,Q)B(P,Q)B = AB(P,Q)B

Proof. (i) Follows from the antitonicity of pre-orthogonality on the defini-
tion of restriction, AB = A u B v A.

(ii) From double orthogonal introduction and the previous fact we have
AB v AB(P,Q)(Q,P) v AB(P,Q)B(Q,P), and so the result follows from mono-
tonicity and idempotency of u.

(iii) Follows from restricted orthogonality introduction analogously to ordi-
nary triple orthogonal elimination from Property 7.

Lemma 5. For any deterministic admissible discipline s, set of s-values C,
set of s-co-values O, and pre-candidate A = A‚V of s,

(i) Pos(C) = Pos(C)‚V and (C, {}) v Pos(C),

(ii) Neg(O) = Neg(O)‚V and ({}, O) v Neg(O), and

(iii) R(A) is a reducibility candidate of s such that R(A)V = A.

Proof. Note that

Pos(C) = (C‚V‚V , C‚V) Pos(C)‚V = (C‚V‚V , C‚V‚V‚V)

Neg(O) = (O‚V , O‚V‚V) Neg(O)‚V = (O‚V‚V‚V , O‚V‚V)

The fact that (C, {}) v Pos(C) and ({}, O) v Neg(C) follows from restricted
double orthogonal introduction (on the term side for Pos and the co-term
side for Neg). The fact that Pos(C) = Pos(C)‚V and Neg(O) = Neg(O)‚V
follows from restricted triple orthogonal elimination (on the co-term side for
Pos and on the term side for Neg). Finally, we know that R(A) = A‚ =
A‚V‚ = R(A)V‚ and so R(A) is a reducibility candidate due to Property 9,
such that R(A)V = A‚V = A.
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The use of all three applications of orthogonality are necessary in general
for correctly modeling a deterministic discipline s, like the call-by-need lv.
However, for the specific call-by-value (v) and call-by-name (n) disciplines,
much simpler constructions with only two applications of orthogonality (and
hence the nomenclature “biorthogonality”) are possible. In fact, these sim-
pler special cases for call-by-value and call-by-name calculi can be derived
from the general construction above, due to the fact that all co-terms are
co-values in call-by-value and all terms are values in call-by-name.

Property 11. For any deterministic admissible discipline s, two reducibility
candidates A and B of s are equal if and only if AV = BV .

Proof. Clearly, if A = B then AV = BV . Conversely, from Property 9 and
the assumption that AV = BV , we know A = AV‚ = BV‚ = B.

Lemma 6. For any set of v-values C and set of n-co-values O:

(i) R(Pos(C)) = (C,C‚)‚ = (C‚‚, C‚), and

(ii) R(Neg(O)) = (O‚, O)‚ = (O‚, O‚‚).

Proof. First, note that every co-term e ∈ Wv is also in Vv. It follows that for
every pre-candidate of v has the property that (A+,A−)V = (A+ ∩V+,A−).
Thus, so long as C ⊆ V+, we have

Pos(C) = (C,C‚)V‚V = (C,C‚)‚V = (C‚‚, C‚)V

And since the reducibility candidate R(Pos(C))V = Pos(C) = (C‚‚, C‚)V

(by Lemma 5), we know that R(Pos(C)) = (C‚‚, C‚) (by Property 11).
Similarly, the dual holds for the negative call-by-name (n) construction.

8. Symmetric Candidates for Non-Confluent Normalization

So, we have only considered the possibility of modeling confluent reduc-
tion as found with deterministic disciplines. This assumption showed up in
the key expansion property (Lemma 4), which only works when top reduction
is deterministic. But in the non-deterministic case, we could have a critical
pair of top reductions c1  〈v||e〉  c2 where just because we know that
c2 is strongly normalizing, that doesn’t mean that c1 must also be strongly
normalizing, and in fact, it need not be (Lengrand and Miquel, 2008). Since
expansion is not guaranteed for non-deterministic disciplines (like with u),
we need another approach. Instead of reducibility candidates, here we will
consider the strictly more general “symmetric candidates.”
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8.1. Expansion as the Soundness of Pre-Candidates

The usual expansion property is a statement about the consequences of a
single step of an individual term-co-term pair. This hypothesis is too weak to
prove the desired result when faced with critically non-confluent reduction
induced by two unrelated top reductions. So to counter the problem, we
will strengthen the hypothesis of expansion to be about a whole collection
of terms and co-terms that together all have the desired expansion property.
Fortunately, the notion of pre-candidates that we have been using all along
is a convenient way to organizing the collection of terms and co-terms, and
orthogonality is a useful way of expressing the hypothesis. We only need to
find the right set of commands (i.e., the right predicate on states of compu-
tation) that captures the correct notion of “expansion” which we can prove
is sound (i.e., all term-co-term interactions are strongly normalizing).

The set of commands which are strongly normalizing after zero or one
steps of top reduction with charge p, and which cannot reach a non-normalizing
command with p top reduction, is:

‚?
p , ‚ ∪ {c | ∅ ⊂ {c′ | c p c

′} ⊆ ‚}
= ‚ ∪ {c | (∃c′ ∈ ‚, c p c

′) ∧ (∀c′ /∈ ‚, c 6 p c
′)}

Note that by choosing a different charge p, we can stipulate that only positive,
negative or neutral steps are allowed to be used, or any combination thereof.
For example, c ∈ ‚?

+− either when c ∈ ‚ now, or when there is at least
one positive or negative step c  +− c′ ∈ ‚ and every such step ends up
in ‚. Thus, ‚?

+− ensures that a different reduction path introduced by a
critical pair of top reductions cannot break normalization. As with the top
reduction relation  , we write ‚? as shorthand for ‚?

+−0.
When the  p reduction relation happens to be deterministic, the set of

commands ‚?
p simplifies to:

‚?
p = {c | ∃c′ ∈ ‚, c ?

p c
′} if c1  p c p c2 implies c1 = c2

But when the p reduction relation is not deterministic, the extra generality
of ‚?

p ensures that if we only know that the command is strongly normalizing
after one step, then every other possible step also leads to a strongly normal-
izing command. This extra assurance is the key fact that lets us side-step
the problem noted above with reasoning about non-confluent critical pairs.
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We can now express a more general form of the expansion property than
Lemma 4, which states that for any pre-candidate where every one of its term-
co-value and value-co-term combinations is “good” (i.e., in ‚) after zero or
one steps, then all of its term-co-term combinations are in fact “good” now.

Lemma 7 (Pre-Candidate Expansion). For any admissible discipline s and
pre-candidate A of s, if A is forward closed and A v AV‚?

then A v A‚.

Proof. Let v, e ∈ A. Since v and e must be strongly normalizing, any infinite
reduction sequence starting from the command 〈v||e〉 has the form (Lemma 1)

〈v||e〉 →→ 〈v′||e′〉 c where v →→ v′ and e→→ e′

such that and the remainder of the infinite reduction sequence continues
from c (i.e., c /∈ ‚). Since 〈v′||e′〉  c we know that at least one of v′ or
e′ is a (co-)value (Property 4), and A is closed under reduction, we know
that v′, e′ ∈ A = AV‚?

, which together implies that 〈v′||e′〉 6 c: a contra-
diction. Therefore, there cannot be any infinite reduction sequence starting
from 〈v||e〉, i.e., the command is strongly normalizing.

This broad fact can be applied to derive other useful instances of expan-
sion. For example, one variant is that ‚ is closed under expansions of a
neutral charge, even when dealing with non-deterministic (co-)terms.

Corollary 1 (Neutral Expansion). Given any admissible discipline s (even
a non-deterministic one) and v, e ∈ Ws, if 〈v||e〉 0 c ∈ ‚ then 〈v||e〉 ∈ ‚.

Proof. Note that the pre-candidate defined as

A = ({v′ | v →→ v′}, {e′ | e→→ e′})

is closed under reduction and A v AV‚?
due to Property 1 and Lemma 3.

Therefore A v A‚ by Lemma 7 and thus 〈v||e〉 ∈ ‚.

Similarly, the original form of the expansion property (Lemma 4) on deter-
ministic disciplines is also a corollary of Lemma 7 with the same construction
as above. This is the sense in which Lemma 7 strictly generalizes the simpler
Lemma 4 in the face of non-confluence.
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8.2. Defining Symmetric Candidates

In contrast with the previous reducibility candidates approach that re-
volves around symmetric operations like A‚ or AV‚, we can define an asym-
metric “saturation” operation which ensures that all the necessary (co-)terms
are in a pre-candidate as dictated by the typing rules, but which may be
overaggressive and include too many (co-)terms with non-sound (i.e., non-
normalizing) interactions with one another.

Definition 10 (Saturation). The saturation of any pre-candidate A of s is:

AS , AV(‚?
+0,‚?

−0)

Expanding the definitions, because both  +0 and  −0 are deterministic
reduction relations (Property 1), the saturation of a pre-candidate A of s is:

AS+ , {v ∈ Ws | ∀E∈A, ∃ c∈‚, 〈v||E〉 ?
+0 c}

AS− , {e ∈ Ws | ∀V ∈A,∃ c∈‚, 〈V ||e〉 ?
−0 c}

The notion of saturation lets us give an alternative definition for “candi-
date” which has a more generous lower bound. That is, AS extends AV‚,
which means that it is easier to show that a (co-)term is in AS than in AV‚.
The difference is that with saturation, we only need to justify a (co-)term by
its own behavior, and can ignore any behavior induced by its partner. For
example, it is enough to know that 〈µαu.c2||µ̃xu.c1〉  µ̃u c1{µαu.c2/x

u} ∈ ‚
even if it’s possible that 〈µαu.c2||µ̃xu.c1〉 µu c2{µ̃xu.c1/α

u} /∈ ‚ as well.

Definition 11 (Symmetric Candidate). A symmetric candidate (of s) is any
pre-candidate A (of s) such that AS v A v A‚. In other words, a symmetric
candidate A is a pre-candidate satisfying the following properties:

(i) Soundness (A v A‚): For all v, e ∈ A, the command 〈v||e〉 is strongly
normalizing.

(ii) Completeness (AS v A): If v is strongly normalizing and 〈v||E〉 ?
+0 c

where c is strongly normalizing for any E ∈ A, then v ∈ A. Dually, if e
is strongly normalizing and 〈V ||e〉 ?

−0 c where c is strongly normalizing
for any V ∈ A, then e ∈ A.

We denote the set of all symmetric candidates of s by CS .
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As with reducibility candidates, symmetric candidates can also be equiv-
alently rephrased as the fixed point of their completeness operation, AS.

Lemma 8. For any admissible discipline s and pre-candidate A of s, if
A = AS then A = AV‚?

.

Proof. Suppose v, e ∈ A. First, note that there cannot be a step 〈v||e〉 +0 c
where neither 〈v||e〉 nor c is in ‚ because then e must be a co-value of A
(Property 4) which violates the assumption that v ∈ AS = A. Similarly,
there cannot be a step 〈v||e〉  −0 c where 〈v||e〉, c /∈ ‚. Therefore, if either
one of v or e is a (co-)value, then either 〈v||e〉 ∈ ‚ immediately, or there is
some c such that 〈v||e〉 c‚, and there is no possible c′ such that 〈v||e〉 
c′ /∈ ‚.

Property 12. For any admissible discipline s and pre-candidate A of s, A
is a symmetric candidate of s if and only if A = AS.

We will return to this property shortly, and present the proof, when we
compare symmetric candidates with reducibility candidates in Section 8.4.

8.3. Constructing Symmetric Candidates

Due to the potential for non-determinacy and the extra leniency of sat-
uration, symmetric candidates are much more difficult to construct when
compared with reducibility candidates. The first step in the construction is
to isolate the terms and co-terms which still behave deterministically with
respect to strong normalization (‚). Terms like µ[x s α].c and V s E can
only participate in at most one standard reduction, so they can serve as part
of the initial core of (co-)values that determine a candidate.

Definition 12 (Deterministic Normalization). The set of commands for
whom top reduction deterministically results in only normalizing or only
non-normalizing commands is:

‚d , {c | ∀c1, c2.(c1  c c2) =⇒ (c1 ∈ ‚ ⇐⇒ c2 ∈ ‚)}

For any discipline s, the pre-candidate Ds is the deterministically-normalizing
terms and co-terms defined as W‚d

s . Expanding the definitions, Ds consists
of the following two sets:

D+ , {v ∈ W+
s | ∀e ∈ W−s , (c1  〈v||e〉 c2) =⇒ (c1 ∈ ‚ ⇐⇒ c2 ∈ ‚)}

D− , {e ∈ W−s | ∀v ∈ W+
s , (c1  〈v||e〉 c2) =⇒ (c1 ∈ ‚ ⇐⇒ c2 ∈ ‚)}
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Just like the (co-)value restriction, AV , we will just write AD as shorthand
for ADs (which is defined as A uDs in Definition 8) when the discipline s is
unambiguous from context.

The positively- and negatively-oriented constructions from Section 7.2
must be further restricted in terms of deterministically normalizing (co-)values.
The bigger challenge is to complete the candidate to include all sensible terms
and co-terms allowed by saturation. Just applying a final orthogonal, as in
R(−), is no longer enough (Lengrand and Miquel, 2008), since that doesn’t
yield a fixed point of saturation. Instead, we can rely on the Knaster-Tarski
fixed point theorem to provide such a solution, since saturation is defined in
terms of pre-orthogonality, it is monotonic with respect to the subtyping re-
lation on pre-candidates (Property 6). Since subtyping pre-candidates forms
a complete lattice, we are guaranteed both a largest and a smallest such
solution with respect to subtyping. These definitions are given as follows:

Posd(C) , (C,C‚DV)‚DV S⊥(A) ,
∧
{B | B ≥ A t BS}

Negd(O) , (O‚DV , O)‚DV S>(A) ,
∨
{B | B ≤ A t BS}

Note that since this definition is based on subtyping instead of refinement, the
“smallest” solution S⊥(−) contains the least terms and the most co-terms,
and dually the “largest” solution S>(−) contains the most terms and the
least co-terms.

Lemma 9. For any admissible discipline s and pre-candidates A and B of
s, if A = A‚DV and B = A t BS, then B is a symmetric candidate of s.

Proof. Because BS v B by assumption and the sets ‚ and ‚? are closed
under reduction (Lemma 2), it suffices to show that B v BV‚?

due to Prop-
erty 8 and Lemma 7. Let v, E ∈ B, so that 〈v||E〉 ∈ ‚? by one of the
following cases:

• If v, E ∈ A then 〈v||E〉 ∈ ‚ because A v A‚.

• If v, E ∈ BS then 〈v||E〉  ?
+0 c ∈ ‚, and if 〈v||E〉  − c′ then v is a

value (Property 4) so it must be that c′ ∈ ‚.

• If v ∈ BS and E ∈ A then 〈v||E〉  ?
+0 c ∈ ‚, and if 〈v||E〉  c′ then

c′ ∈ ‚ too because A v D.
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• If v ∈ A and E ∈ BS then v must be a value since A v V , so that
〈v||E〉 ?

−0 c ∈ ‚ and if 〈v||E〉 c′ then c′ ∈ ‚ because A v D.

Likewise, for every V, e ∈ B, 〈V ||e〉 ∈ ‚?. Therefore, B v BV‚?
.

Lemma 10. For any admissible discipline s, set s-values of C, set of s-
co-values of O, and pre-candidate A = A‚DV of s:

(i) Posd(C) = Posd(C)‚DV and (C, {}) v Posd(C),

(ii) Negd(O) = Negd(O)‚DV and ({}, O) v Negd(O), and

(iii) there exists at least one symmetric candidate extending A (i.e., there
is a symmetric candidate B such that A v B), where S⊥(A) is the
smallest one and S>(A) is the largest one (with respect to ≤).

Proof. Parts (i) and (ii) are analogous to Lemma 5. For part (iii), note that

S>(A) = A t S>(A)S S⊥(A) = A t S⊥(A)S

are the largest and smallest such fixed points via the Knaster-Tarski fixed
point theorem since the operationAt−S is monotonic with respect to subtyp-
ing (6). From Lemma 9, it follows that both are symmetric candidates.

8.4. Symmetric Candidates versus Reducibility Candidates

We’ve alluded to the fact that symmetric candidates “generalize” re-
ducibility candidates. This is well-known to be true in the weak sense
that symmetric candidates are powerful enough to capture fundamentally
non-deterministic standard reduction whereas reducibility candidates and
biorthogonality apply to deterministic system. However, it is also true in
the much stronger sense that the notions of symmetric candidate and re-
ducibility candidate are the same for deterministic systems, such that the
two constructions are exactly equal.

In terms of the fundamental operations that serve as the upper- and lower-
bounds for both reducibility candidates and symmetric candidates, there is
a natural ordering between them.

Property 13. For any s and pre-candidate A of s, A‚ v AV‚ v AS.
Furthermore, if s is deterministic and admissible, then AV‚ = AS.
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Proof. The first part follows from extension (Property 6) since ‚ ⊆ ‚?
p. The

second part follows from deterministic expansion (Lemma 4) to show that
AS v AV‚.

Theorem 3. For any admissible discipline s, every symmetric candidate of
s is a reducibility candidate of s, and if s is also deterministic, then every
reducibility candidate of s is a symmetric candidate of s.

Proof. Follows directly from Property 13 and Definitions 9 and 11.

This ordering also lets us prove that both forms of candidates are exactly
the same as the fixed points of their completeness operation (which define
their lower bound).

Property 9. For any deterministic admissible discipline s and pre-candidate
A of s, A is a reducibility candidate of s if and only if A = AV‚.

Proof. Follows from Property 13 (to show that every reducibility candidate
A is a fixed point A = AV‚ = A‚) and from Lemma 7 (to show that every
fixed point A = AV‚ v AV‚?

is a reducibility candidate).

Property 12. For any admissible discipline s and pre-candidate A of s, A
is a symmetric candidate of s if and only if A = AS.

Proof. Follows from Property 13 (to show that every symmetric candidate
A is a fixed point A = AS = AV‚ = A‚) and from Lemma 9 (to show that
every fixed point A = AS is a symmetric candidate).

As a consequence, since reducibility candidates are unique up to their
values (Property 11), then so too are symmetric candidates of determin-
istic disciplines. That means that for any deterministic admissible s and
A = A‚V of s, then S⊥(A) = S>(A) = R(A) is the unique reducibility/sym-
metric candidate extending A. As such, there is no loss of information in
using the symmetric candidate construction over the reducibility candidate
(or biorthogonality) construction: in the end, they will amount to exactly the
same as the simplest and most-specific construction depending on the disci-
pline s. This fact is also interesting because, in general for a non-deterministic
discipline, like u, we do not have a similar uniqueness guarantee, and do not
know whether S⊥(A) = S>(A) for u.
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9. A Uniform Model of Strong Normalization

The final step is to interpret syntactic types as symmetric candidates
(which are the same thing as reducibility candidates for deterministic disci-
plines), and typing judgements as logical statements. At this point, these
following definitions are standard, as per the approaches of logical relations
and biorthogonality.

9.1. Interpreting Types, Judgements, and Rules

The interpretation of types is parameterized by a product of functions,
θ : Πs(TypeVar → CS s), from type variables to symmetric candidates of the
appropriate discipline, and is defined as follows:

JasKθ , θs(a)

JA s→ BKθ , S>(Neg{V s E | V ∈ JAKα, E ∈ JBKβ})
J∀sat.BKθ , S>(Neg{At s E | A ∈ CS t, E ∈ JBK

θ,A/at
})

where θ,A/at denotes the usual extension of the t-component of θ:

(θ,A/at)t(a) = A
(θ,A/at)s(b) = θs(b) if s 6= t or b 6= a

The interpretation of entire typing judgements then follows the interpretation
of individual types as usual:

JΘK , Πs(TypeVar → symcanss)

JΓ ` ∆Kθ , {σ ∈ Subst | ∀x:A ∈ Γ, x{σ} ∈ JAKθ}
∩ {σ ∈ Subst | ∀α:A ∈ ∆, α{σ} ∈ JAKθ}

Jc : (Γ `Θ ∆)K , ∀θ ∈ JΘK.∀σ ∈ JΓ ` ∆Kθ.c{σ} ∈ ‚
JΓ `Θ v : A | ∆K , ∀θ ∈ JΘK.∀σ ∈ JΓ ` ∆Kθ.v{σ} ∈ JAKθ
JΓ | e : A `Θ ∆K , ∀θ ∈ JΘK.∀σ ∈ JΓ ` ∆Kθ.e{σ} ∈ JAKθ

In addition, we also give an interpretation of inference rules of the form

H1 . . . Hn

J
Rule
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as the statement

JRuleK , JH1K ∧ . . . ∧ JHnK =⇒ JJK

and say that Rule is sound when JRuleK is true. That way, the interpretation
of any derivation’s conclusion must be true if it was derived from only sound
inference rules.

Lemma 11. For any judgement J derivable from sound rules, JJK is true.

Proof. By induction on the given derivation tree.

9.2. Adequacy and Strong Normalization

Having interpreted the meaning of types and judgements, it now remains
to show that the inference rules of our type system are indeed sound with
respect to the interpretation, or in other words, the interpretation is ade-
quate. Since we are dealing with an open property—reduction of any sub-
expression, even under binders—we will need to know that the presence of
free variables does not cause any harm. In particular, it is important to note
that strong normalization does not change in a command made from a free
(co-)variable versus the underlying term or co-term. This, in turn, tells us
that (co-)variables inhabit every type: a usual fact one proves on the road
to strong normalization.

Lemma 12. 〈v||α〉 is strongly normalizing if and only if v is, and 〈x||e〉 is
strongly normalizing if and only if e is.

Proof. We will only show the first part, as the second is exactly dual. If
〈v||α〉 is strongly normalizing then so is v because it is a sub-term of the
command. The other implication is more interesting, as it means that
(nearly) every reduction of 〈v||α〉 can be done on v alone. In particular,
the only counter-example is an infinite reduction sequence of the usual form
(Lemma 1) 〈v||α〉 →→ 〈v′||α〉  c where v →→ v′. Without loss of generality,
we can assume that 〈v′||α〉  µ c since a top ς reduction can be considered
internal to the term-side, and no other top reduction is possible. Therefore
we can assume (up to α-renaming) that v′ = µα.c so that 〈µα.c||α〉  µ c.
But v′ is strongly normalizing since it is a reduct of v and so c is strongly
normalizing since it is a sub-command of v′. This contradicts the assumption
that there is an infinite reduction sequence beginning from c, so 〈v||α〉 must
be strongly normalizing.
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Lemma 13. Every symmetric candidate A of s contains all variables xs and
co-variables αs.

Proof. From antitonicity of A v Ws we have W‚
s v A‚ = A (Property 12),

and from Lemma 12, we know that xs, αs ∈ W‚
s .

We can now prove that each individual inference rule of the type sys-
tem is sound. Due to the presence of quantifiers (namely ∀), we will also
rely on a typical substitution lemma stating that syntactic substitution is
interchangeable with substitution in the environment.

Lemma 14. JA{Bs/b
s}Kθ = JAK

θ,JBsKθ/b
s

Proof. By induction on the definition of JAKθ.

Lemma 15 (Inference Soundness). For any collection of admissible disci-
plines, every inference rule in Fig. 6 is sound.

Proof. • Cut : Suppose JΓ `Θ v : A | ∆K and JΓ | e : A `Θ ∆K, and let
θ ∈ JΘK and σ ∈ JΓ ` ∆KΘ. We know from the assumptions that
v{θ}, e{θ} ∈ JAKθ and, since JAKθ v JAKθ

‚, 〈v||e〉{θ} = 〈v{θ}||e{θ}〉 ∈
‚ as required.

• VarL: For any θ ∈ JΘK and σ ∈ JΓ, x : A ` ∆Kθ, we know that x{σ} ∈
JAKθ by definition.

• VarL: Dual to the case for VarR.

• ActR: Suppose Jc : (Γ `Θ αs : As,∆)K and let θ ∈ JΘK and σ ∈ JΓ ` ∆KΘ.
First, note that µαs.c{σ} ∈ Ws because αs ∈ JAsKθ (Lemma 13) which
implies that c{σ} = c{σ, αs/αs} ∈ ‚. Second, it follows that for
any E ∈ JAsKθ, 〈µαs.c{σ}||E〉  + c{σ,E/αs} ∈ ‚ and so µαs.c{σ} ∈
JAsKθ

S v JAsKθ by definition.

• ActL: Dual to the case for ActR.

• ∀L: Suppose JΓ | e : B{At/a
t} `Θ ∆K and let θ ∈ JΘK and σ ∈ JΓ ` ∆Kθ.

We can now proceed by cases on whether e is a co-value:
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– If e is a co-value, then note that At s e ∈ Ws because and e
is strongly normalizing (where the only possible reductions are
within e), and that

(At s e){σ} = At{σ} s e{σ} ∈ {A′t s E | A ∈ CS t, E ∈ JBK
θ,A/at

}

because JB{At/a
t}Kθ = JBK

θ,JAKθ/a
t (Lemma 14) and so we have

(As s e){σ} ∈ J∀sat.BKθ by Lemma 5.

– If e is not a co-value, then note that for any V ∈ J∀[s]a[t]BKθ,

〈V ||(At s e){σ}〉 − 〈V ||µ̃xs.〈µβ.〈x||At{σ} s β〉||e{σ}〉〉 ∈ ‚
because µ̃xs.〈µβ.〈x||At{σ} s β〉||e{σ}〉 ∈ J∀sat.BKθ by applying the
interpretations of the Cut , VarL, VarR, ActL, ActR rules, and the
case of ∀L on a co-value, already proved sound above.

• ∀R: Suppose Jc : (Γ `
Θ,a

t βr : Br,∆)K and let θ ∈ JΘK and σ ∈ JΓ ` ∆Kθ.
First, note that µ[at s βr].c ∈ Ws because βr ∈ JBrKθ′ for all θ′ (Lemma 13)
which implies that c{σ} = c{σ, at/at, βr/βr} ∈ ‚. Second, it follows
that for any type At, symmetric candidate A of t, and co-value E ∈
JBK

θ,A/at
, we have the extension σ,At/a

t, E/βr ∈ JΓ ` βr : Br,∆K
θ,A/at

from the side-condition that at /∈ FV (Γ `Θ ∆), which leads to

〈µ[at s βr].c{σ}||At s E〉 0 c{σ,At/a
t, E/βr} ∈ ‚

and so µ[at s βr].c{σ} ∈ J∀sat.BKθ by Corollary 1 and Lemma 10.

• →L and →R: Similar to the cases for ∀L and ∀R, respectively.

Since each individual inference rule is sound, we have adequacy for the
entire model, which means that typing implies strong normalization.

Corollary 2 (Adequacy). For any collection of admissible disciplines:

1. if c : (Γ `Θ ∆) is derivable then Jc : (Γ `Θ ∆)K is true,

2. if Γ ` v : A | ∆ is derivable, then JΓ ` v : A | ∆K is true, and

3. if Γ | e : A ` ∆ is derivable then JΓ | e : A ` ∆K is true.
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Proof. From Lemmas 11 and 15.

Theorem 4 (Strong Normalization). Every well-typed command, term, and
co-term is strongly normalizing under any collection of admissible disciplines.

Proof. An application of adequacy (Corollary 2) to an initial mapping of
type variables, θs(a) = S>(Neg{}) for every s and a, and the identity substi-
tution of (co-)variables since they are present in every symmetric candidate
(Lemma 13).

10. Conclusion

We have explored multi-discipline calculi with polymorphism and con-
trol, based on the sequent calculus. The sequent calculus setting is good for
exploring multi-discipline programming since it provides a clean separation
between the different disciplines and allows us to treat them abstractly as an
object of study. As our main objective, we established strong normalization
by using a model of types based on both orthogonality and fixed points. Our
model is uniform over multiple disciplines, with a generic characterization of
which ones are admissible, and strictly generalizes several previous models.
This study illustrates the benefits of both the sequent calculus and discipline-
agnostic reasoning: we can give a single explanation for several calculi in one
fell swoop and without losing anything from the discipline-specific models.
Our setting of pre-candidates already comes with a built-in notion of sub-
typing along with the union and intersection of types, it would be interesting
to relate these ideas to filter models and the characterization of strong nor-
malization in terms of dual intersection and union types. More practically,
we would like to relate our formal study of mixing disciplines to the way
current languages combine strict and lazy features, with an ultimate aim of
improving multi-disciplined programming and compilation.
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