
A Computational Understanding of
Classical (Co)Recursion

Paul Downen
University of Oregon

Eugene, Oregon
pdownen@cs.uoregon.edu

Zena M. Ariola
University of Oregon

Eugene, Oregon
ariola@cs.uoregon.edu

Abstract
Recursion and induction are mature, well-understood top-
ics in programming. Yet their duals, corecursion and co-
induction, are still exotic and underdeveloped programming
features. We aim to put them on equal footing by giving a
foundation for corecursion based on computation, analogous
to the original computational foundation of recursion. At the
lower level, we show how the connection between the two
can be strengthened through their implementation details
in an abstract machine. At the higher level, we develop a
syntactic equational theory for inductive and coinductive
reasoning based on control flow. We also observe the impact
of evaluation strategy: call-by-name has efficient recursion
and strong coinductive reasoning, but call-by-value has effi-
cient corecursion and strong inductive reasoning.

CCS Concepts: • Theory of computation → Program
schemes.

Keywords: Corecursion, Coinduction, Control, Duality

ACM Reference Format:
Paul Downen and Zena M. Ariola. 2020. A Computational Under-
standing of Classical (Co)Recursion. In 22nd International Sympo-
sium on Principles and Practice of Declarative Programming (PPDP ’20),
September 8–10, 2020, Bologna, Italy. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3414080.3414086

1 Introduction
Induction is a familiar and commonplace notion with many
firm foundations: logical, algebraic, and computational. Co-
induction—the dual to induction—instead looks unfamiliar,
and is usually relegated to coalgebras [36], since traditionally
only the categorical setting speaks clearly about this duality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPDP ’20, September 8–10, 2020, Bologna, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8821-4/20/09. . . $15.00
https://doi.org/10.1145/3414080.3414086

The goal of this paper is to introduce the basic principles
of coinductive and inductive structures from a computational
point of view, by presenting a language that captures known
intuitions about them. For example, Harper [23] explains that
an element in a infinite stream of natural numbers can only
be generated after computing all the proceeding elements.
Moreover, the introduction of stream objects is sometimes
described as the “dual” to the elimination of natural numbers
[35, 37], but how is this so? Especially since, in the 𝜆-calculus,
stream objects are introduced with an internal “seed” used
to generate the elements in order, whereas the elimination
of natural numbers has no such internal state.
To make these intuitions precise, we express the (co)-

inductive principles with symmetric forms of recursion and
corecursion in a programming language. This symmetry is en-
capsulated by the duality [9, 22] between data types—defined
by the structure of objects—and codata types—defined by the
behavior of objects. We aim to demystify coinductive codata
types, and to make them more suitable for widespread use
in programming environments [15, 21].

Our contributions (•) and observations (–) are:

– (Section 2) We point out the impact of evaluation strat-
egy on recursion combinators for inductive types:
* In call-by-value, recursion is eager, and is just as
inefficient as its encoding in terms of the iterator.

* In call-by-name, recursion may end early; an asymp-
totic complexity improvement.

– (Section 3) In an abstract machine, the recursor for
inductive types like numbers accumulates a continu-
ation during evaluation, maintaining the progress of
recursion that is implicit in the 𝜆-calculus.
• (Section 4) Applying duality in an abstract machine
based on the sequent calculus [4, 11], we derive the
corresponding corecursors for infinite streams with a
value accumulator dual to the recursor’s continuation.

– (Section 4.2) Like recursion, corecursion can be more
efficient than coiteration by letting corecursive pro-
cesses stop early. Dual to recursion, this improvement
in algorithmic complexity is only seen in call-by-value.
• (Section 5) We translate the fully-general corecursor
from the abstract machine back into direct style in
terms of a 𝜆𝜇-calculus using first-class control effects.
• (Section 5.1) (Co)recursive introduction rules require
an internal state to express non-trivial computations.

https://doi.org/10.1145/3414080.3414086
https://doi.org/10.1145/3414080.3414086

PPDP ’20, September 8–10, 2020, Bologna, Italy P. Downen and Z.M. Ariola

𝐴, 𝐵 ::= 𝐴→ 𝐵 | nat
𝑀, 𝑁 ::= 𝑥 | 𝜆𝑥 .𝑀 | 𝑀 𝑁 | zero | succ𝑀 | rec𝑀 as ralt
ralt ::= {zero→ 𝑁 | succ𝑥 → 𝑦.𝑀}

Figure 1. System T: 𝜆-calculus with numbers and recursion.

In contrast, recursive elimination rules (as in System T)
do not.We define the corresponding stateless corecursor
as coelimination.
• (Section 6) We present a direct-style equational the-
ory of natural numbers and streams, corresponding
to weak induction and coinduction, based on control
flow. The theory does not resort to bisimulation [18];
it uses syntactic, locally criteria for valid applications
of the coinductive hypothesis.
• (Section 6.3) We identify the impact of evaluation strat-
egy on equational reasoning in order to generalize the
weak (co)inductive principles to strong (co)induction:
* In call-by-value, strong induction is sound.
* In call-by-name, strong coinduction is sound, which
subsumes the traditional notion of bisimulation.

2 Recursion in the Lambda Calculus
The prototypical example of computational recursion is Gödel’s
System T [20], whose syntax is given in fig. 1. System T ex-
tends the simply-typed 𝜆-calculus, whose focus is on func-
tions of type 𝐴→ 𝐵, with ways to construct and use natural
numbers of type nat. Values of nat are built with the famil-
iar constructors zero (denoting the number 0) and succ𝑀
(denoting the successor of the number represented by 𝑀).
This way, the number 𝑛 can be written as succ𝑛 zero. To use
these numbers, System T includes a recursor of the form
rec𝑀 as {zero → 𝑁 | succ𝑥 → 𝑦.𝑁 ′}. This recursor is
similar to pattern-matching in functional programming: the
term𝑀 is analyzed to determine if it has the shape zero or
succ𝑥 , and the matching branch is returned. But in addition
to binding the predecessor of𝑀 to 𝑥 in the succ𝑥 branch, this
recursor also binds 𝑦 to the recursive result that is returned
if𝑀 is replaced with its predecessor.
Notice how the recursor performs two jobs at the same

time: finding the predecessor of a natural numbers as well
as calculating the recursive result given for the predeces-
sor. These two functionalities are captured separately by a
conventional case-expression and the iterator, respectively.
Both can be expressed in terms of macro-expansions into
the recursor by ignoring the unneeded parameter:

case𝑀 of { zero → 𝑁

| succ𝑥 → 𝑁 ′} :=
rec𝑀 as { zero → 𝑁

| succ𝑥 → . 𝑁 ′}
iter𝑀 of { zero → 𝑁

| succ→ 𝑦. 𝑁 ′} :=
rec𝑀 as { zero → 𝑁

| succ → 𝑦. 𝑁 ′}

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 Var

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵
Γ ⊢ 𝜆𝑥 .𝑀 : 𝐴→ 𝐵

→𝐼 Γ ⊢ 𝑀 : 𝐴→ 𝐵 Γ ⊢ 𝑁 : 𝐴
Γ ⊢ 𝑀 𝑁 : 𝐵 →𝐸

Γ ⊢ zero : nat nat𝐼zero
Γ ⊢ 𝑀 : nat

Γ ⊢ succ𝑀 : nat nat𝐼succ

Γ ⊢ 𝑀 : nat Γ ⊢ 𝑁 : 𝐴 Γ, 𝑥 : nat, 𝑦 : 𝐴 ⊢ 𝑁 ′ : 𝐴
Γ ⊢ rec𝑀 as {zero→ 𝑁 | succ𝑥 → 𝑦.𝑁 ′} : 𝐴 nat𝐸

Figure 2. Type system of System T.

Call-by-name values (𝑉) and evaluation contexts (𝐸):
𝑉 ,𝑊 ::= 𝑀 𝐸 ::= □ | 𝐸 𝑁 | rec𝐸 as ralt

Call-by-value values (𝑉) and evaluation contexts (𝐸):
𝑉 ,𝑊 ::= 𝑥 | 𝜆𝑥 .𝑀 | zero | succ𝑉

𝐸 ::= □ | 𝐸 𝑁 | 𝑉 𝐸 | succ𝐸 | rec𝐸 as ralt
Operational rules, where ralt = {zero→𝑁 | succ𝑥→𝑦.𝑁 ′}:
(𝛽→) (𝜆𝑥 .𝑀) 𝑉 ↦→ 𝑀 [𝑉 /𝑥]
(𝛽zero) rec zero as ralt ↦→ 𝑁

(𝛽succ) rec succ𝑉 as ralt ↦→ (𝜆𝑦.𝑁 ′[𝑉 /𝑥]) (rec𝑉 as ralt)

Figure 3. Operational semantics of System T.

These macro-expansions are analogous to the common syn-
tactic sugar of let-bindings in terms of functions:

let𝑥 = 𝑀 in𝑁 := (𝜆𝑥 .𝑁) 𝑀

The type system of System T is given in fig. 2. The Var ,→𝐼
and→𝐸 typing rules are from the simply typed 𝜆-calculus.
The two nat𝐼 introduction rules give the types of the con-
structors of nat, and the nat𝐸 elimination rule types the nat
recursor. If rec is seen instead as a primitive function, rather
than a syntactic construct, it would have the type

rec𝐴nat : nat→ 𝐴→ (nat→ 𝐴→ 𝐴) → 𝐴

whereas the primitive functions corresponding to case and
iter on nat would have the type

case𝐴nat : nat→ 𝐴→ (nat→ 𝐴) → 𝐴

iter𝐴nat : nat→ 𝐴→ (𝐴→ 𝐴) → 𝐴

System T’s call-by-name and -value operational seman-
tics are given in fig. 3. Both of these evaluation strategies
share operational rules of the same form, with 𝛽→ being
the well-known 𝛽 rule of the 𝜆-calculus and 𝛽zero and 𝛽succ
defining recursion on the two nat constructors. The only
difference between call-by-value and -name evaluation lies
in their notion of values 𝑉 (i.e., those terms which can be
substituted for variables) and evaluation contexts (i.e., the
location of the next reduction step to perform). Note that we
take this notion seriously, and never substitute a non-value
for a variable. As such, the 𝛽succ rule does not substitute the
recursive computation rec𝑉 as ralt for 𝑦, since it might not

A Computational Understanding of Classical (Co)Recursion PPDP ’20, September 8–10, 2020, Bologna, Italy

be a value (in call-by-value). Instead, the recursive computa-
tion is merely bound to 𝑦, so that the correct next reduction
step can be performed in either evaluation strategy.
In call-by-name, this next step is indeed to substitute

rec𝑉 as ralt for 𝑦, and so we have:

rec succ𝑀 as ralt ↦→→ 𝑁 ′[𝑀/𝑥, rec𝑀 as ralt/𝑦]
So call-by-name recursion is computed starting with the
current (largest) number first and ending with the smallest
number needed (possibly the base case for zero). If a recursive
result is not needed (such as with the encoding of case)
then it is not computed at all, allowing for an early end of
the recursion. In contrast, call-by-value must evaluate the
recursive result first before it can be substituted for 𝑦. As
such, call-by-value recursion always starts by computing
the base case for zero (whether or not it is needed), and the
intermediate results are propagated backwards until the case
for the initial number is reached. So call-by-value allows for
no opportunity to end the computation of rec early.
Both the type system and operational semantics of Sys-

tem T work together, ensuring that well-typed programs (i.e.,
closed terms of type nat) always finish and return a value
built by the nat constructors.

Theorem 1 (Type safety & Termination). If • ⊢ 𝑀 : nat in
System T then𝑀 ↦→→ zero or𝑀 ↦→→ succ𝑉 for some 𝑉 .

As example uses of the recursor, we can encode the fol-
lowing definitions by pattern-matching

plus zero 𝑦 = 𝑦 plus (succ𝑥) 𝑦 = succ (plus 𝑥 𝑦)
pred zero = zero pred (succ𝑥) = 𝑥

minus 𝑥 zero = 𝑥 minus 𝑥 (succ𝑦) = minus (pred 𝑥) 𝑦
into System T’s rec as follows:

plus = 𝜆𝑥.𝜆𝑦. iter𝑥 as{zero→ 𝑦 | succ→ 𝑧. succ 𝑧}
pred = 𝜆𝑥. case𝑥 of{zero→ zero | succ𝑦 → 𝑦}

minus = 𝜆𝑥.𝜆𝑦. iter𝑦 as{zero→ 𝑥 | succ→ 𝑧. pred 𝑧}
Note that plus can be defined using only iter, however pred
(and therefore minus) uses case, which is not immediately
available from iter.

2.1 Recursion vs iteration
We sawhow iteration can be encoded in terms of recursion by
just ignoring the predecessor. The only cost of this encoding
is an unused variable binding, which is easily optimized away.
In practice, the encoding of iteration will perform exactly
the same as if we had taken iteration as a primitive.
Going the other way, it is also known that recursion can

be encoded in terms of iteration by using pairs as follows:
rec𝑀 as
{ zero → 𝑁

| succ𝑥 → 𝑦.𝑁 ′}
:=

snd(iter𝑀 as
{ zero → (zero, 𝑁)
| succ→ (𝑥,𝑦).(succ𝑥, 𝑁 ′)})

Unfortunately, this encoding of recursion is not always as
efficient as the original. If the recursive parameter 𝑦 is never

used (such as in the pred function), then rec can provide
an answer without computing the recursive result. How-
ever, when encoding rec with iter, the result of the recursive
value must always be computed before an answer is seen,
regardless of whether or not 𝑦 is needed.

Notice that this difference in cost is only apparent in call-
by-name, which can be asymptotically more efficient when
the recursive 𝑦 is not needed to compute 𝑁 ′, as in pred. In
call-by-value, the recursor must descend to the base case
anyway before the incremental recursive steps are propa-
gated backward. That is to say, the call-by-value rec has the
same asymptotic complexity as its encoding via iter.
In contrast, inductive reasoning is more powerful in call-

by-value, because every (closed) value of type nat will have
the form succ𝑛 zero for some number 𝑛 ≥ 0. We will ex-
plore the differences in inductive reasoning later in section 6.
Therefore, when choosing between a call-by-value or call-by-
name semantics for a language, there is a tension between
reasoning power and asymptotic efficiency for recursion.

3 Recursion in an Abstract Machine
An abstract machine is a useful tool for explicating lower-
level performance details of recursion. Unlike the operational
semantics given in fig. 3, which has to search for the next
redex at every step, an abstract machine explicitly includes
this search in the computation itself. As such, every step of
the machine can apply by matching only on the top-level
form of the machine state.
We will now examine an abstract machine for System T,

which spells out how to find and perform each redex in a
computation.1 First, consider this abstract machine for call-
by-name System T based on the Krivine machine [28]:

⟨𝑀 𝑁 ||𝐸⟩ ↦→ ⟨𝑀 ||𝑁 · 𝐸⟩
⟨rec𝑀 as ralt ||𝐸⟩ ↦→ ⟨𝑀 || rec raltwith𝐸⟩
⟨𝜆𝑥.𝑀 ||𝑁 · 𝐸⟩ ↦→ ⟨𝑀 [𝑁 /𝑥] ||𝐸⟩

⟨zero || rec raltwith𝐸⟩ ↦→ ⟨𝑁 ||𝐸⟩
⟨succ𝑀 || rec raltwith𝐸⟩ ↦→ ⟨𝑁 ′[𝑀/𝑥, rec𝑀 as ralt/𝑦] ||𝐸⟩

where ralt := {zero → 𝑁 | succ𝑥 → 𝑦.𝑁 ′} above. The
first two rules are refocusing rules that move the attention
of the machine closer to the next reduction building a larger
continuation: for function application (𝑁 · 𝐸 corresponding
to 𝐸 [□ 𝑁]) and recursion (rec raltwith𝐸 corresponding to
𝐸 [rec□ as ralt]). The latter three rules are reduction rules
which correspond to steps of the operational semantics in
fig. 3. Note that in the machine, the recursor must explicitly
accumulate and build upon a continuation, “adding to” the
place it returns to with every recursive call.

1Our primary interest in abstract machines is in the accumulation and use
of these continuations. For simplicity, we leave out other common details
sometimes specified by abstract machines, such as modeling a concrete
representation of substitution and environments.

PPDP ’20, September 8–10, 2020, Bologna, Italy P. Downen and Z.M. Ariola

Commands (𝑐), general terms (𝑣), and general coterms (𝑒):
𝑐 ::= ⟨𝑣 ||𝑒⟩ 𝑣,𝑤 ::= 𝜇𝛼.𝑐 | 𝑉 𝑒, 𝑓 ::= 𝜇̃𝑥 .𝑐 | 𝐸

ralt ::= {zero→ 𝑣 | succ𝑥 → 𝑦.𝑤}
Call-by-name values (𝑉) and evaluation contexts (𝐸):

𝑉 ,𝑊 ::= 𝜇𝛼.𝑐 | 𝑥 | 𝜆𝑥 .𝑣 | zero | succ 𝑣
𝐸, 𝐹 ::= 𝛼 | 𝑣 · 𝐸 | rec raltwith𝐸

Call-by-value values (𝑉) and evaluation contexts (𝐸):
𝑉 ,𝑊 ::= 𝑥 | 𝜆𝑥.𝑣 | zero | succ𝑉
𝐸, 𝐹 ::= 𝜇̃𝑥 .𝑐 | 𝛼 | 𝑉 · 𝑒 | rec raltwith 𝑒

Operational reduction rules:
(𝜇) ⟨𝜇𝛼.𝑐 ||𝐸⟩ ↦→ 𝑐 [𝐸/𝛼]
(𝜇̃) ⟨𝑉 ||𝜇̃𝑥 .𝑐⟩ ↦→ 𝑐 [𝑉 /𝑥]
(𝛽→) ⟨𝜆𝑥 .𝑣 ||𝑉 · 𝐸⟩ ↦→ ⟨𝑣 [𝑉 /𝑥] ||𝐸⟩
(𝛽zero) ⟨zero || rec raltwith𝐸⟩ ↦→ ⟨𝑣 ||𝐸⟩
(𝛽succ) ⟨succ𝑉 || rec raltwith𝐸⟩ ↦→ ⟨𝜇𝛼.⟨𝑉 || rec raltwith𝛼⟩

||𝜇̃𝑦.⟨𝑤 [𝑉 /𝑥] ||𝐸⟩⟩
where ralt = {zero→ 𝑣 | succ𝑥 → 𝑦.𝑤}

Figure 4. Uniform abstract machine for System T.

This abstract machine is specialized for the call-by-name
semantics. How should we approach the call-by-value ver-
sion? We could define an entirely separate abstract machine
with many more refocusing rules and continuations (corre-
sponding to the additional cases of evaluation contexts in
call-by-value). Instead, we will unite both evaluation strate-
gies with a common abstract machine, shown in fig. 4, based
on the 𝜆𝜇𝜇̃ sequent calculus [7]. Machine states are com-
mands (𝑐) of the form ⟨𝑣 ||𝑒⟩ which puts together a general
term (𝑣) which produces an output and a general coterm (𝑒 ,
read as “continuation terms” as well as the dual to terms)
which consumes an input.

As with System T, the operational semantics depends on
the notion of value (𝑉) and covalue (𝐸, analogous to eval-
uation contexts and read as “continuation values” as well
as the dual to values) specialized to either evaluation strat-
egy. However, now the syntax of general terms and coterms
also depend on the definition of values and covalues. Gen-
eral terms include 𝜇-bindings (corresponding to Scheme’s
call/cc) and values, and general coterms include 𝜇̃-bindings
(corresponding to contexts let𝑥 = □ in𝑀) and covalues.
Note that in call-by-name, values are the same as general
terms, but covalues are more restrictive than coterms. Dually,
call-by-value covalues are the same as general coterms, but
values are more restrictive than terms.

The semantics in fig. 4 no longer has any of the old refo-
cusing rules; instead the generic 𝜇 and 𝜇̃ reductions perform
any needed refocusing by substituting a value for the bound
variable 𝑥 , or a covalue for the bound covariable 𝛼 (read as
“continuation variable” as well as the dual to a variable). For
example, the refocusing rule ⟨𝑀 𝑁 ||𝐸⟩ ↦→ ⟨𝑀 ||𝑁 · 𝐸⟩ is en-
coded as𝑀 𝑁 = 𝜇𝛼.⟨𝑀 ||𝑁 ·𝛼⟩, where 𝛼 stands for the generic
𝐸 in the refocusing step. More formally, all System T terms

Γ ⊢ 𝑣 : 𝐴 Γ ⊢ 𝑒 ÷𝐴
Γ ⊢ ⟨𝑣 ||𝑒⟩ Cut

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 VarR
Γ, 𝛼 ÷𝐴 ⊢ 𝛼 ÷𝐴 VarL

Γ, 𝛼 ÷𝐴 ⊢ 𝑐
Γ ⊢ 𝜇𝛼.𝑐 : 𝐴 ActR

Γ, 𝑥 : 𝐴 ⊢ 𝑐
Γ ⊢ 𝜇̃𝑥 .𝑐 ÷𝐴 ActL

Γ, 𝑥 : 𝐴 ⊢ 𝑣 : 𝐵
Γ ⊢ 𝜆𝑥.𝑣 : 𝐴→ 𝐵

→𝑅 Γ ⊢ 𝑣 : 𝐴 Γ ⊢ 𝑒 ÷ 𝐵
Γ ⊢ 𝑣 · 𝑒 ÷𝐴→ 𝐵

→𝐿

Γ ⊢ zero : nat nat𝑅zero
Γ ⊢ 𝑉 : nat

Γ ⊢ succ𝑉 : nat nat𝑅succ

Γ ⊢ 𝑣 : 𝐴 Γ, 𝑥 : nat, 𝑦 : 𝐴 ⊢ 𝑤 : 𝐴 Γ ⊢ 𝐸 ÷𝐴
Γ ⊢ rec{zero→ 𝑣 | succ𝑥 → 𝑦.𝑤}with𝐸 ÷ nat nat𝐿

Figure 5. Type system for the System T machine.

can be translated to the language of the abstract machine
using 𝜇- and 𝜇̃-bindings as follows:

J𝑥K := 𝑥
J𝜆𝑥 .𝑀K := 𝜆𝑥.J𝑀K

JzeroK := zero
Jsucc𝑀K := 𝜇𝛼.⟨J𝑀K ||𝜇̃𝑥 .⟨succ𝑥 ||𝛼⟩⟩

J𝑀 𝑁 K := 𝜇𝛼.⟨J𝑀K ||𝜇̃𝑥 .⟨J𝑁 K ||𝜇̃𝑦.⟨𝑥 ||𝑦 · 𝛼⟩⟩⟩
Jrec𝑀 as raltK := 𝜇𝛼.⟨J𝑀K || rec JraltK with𝛼⟩

J{zero→𝑀 | succ𝑥→𝑦.𝑁 }K := {zero→J𝑀K | succ𝑥→𝑦.J𝑁 K}

We can also give a type system directly for the abstract
machine, as shown in fig. 5. This system has judgments for
assigning types to terms as usual: Γ ⊢ 𝑣 : 𝐴 states that 𝑣
produces an output of type 𝐴. In addition, there are also
judgments Γ for assigning types to coterms (Γ ⊢ 𝑒 ÷𝐴 states
that 𝑒 consumes an input of type 𝐴) and commands (Γ ⊢ 𝑐
states that 𝑐 is safe to compute, and does not produce or
consume anything). With this type system, we can capture
the fact that compilation preserves types as well as the oper-
ational semantics of System T terms.

Theorem 2 (Type Preservation). Γ ⊢ 𝑀 : 𝐴 iff Γ ⊢ J𝑀K : 𝐴.

Theorem 3 (Operational Correspondence). For any
• ⊢ 𝑀 : nat in System T:

1. 𝑀 ↦→→ zero if and only if ⟨J𝑀K ||𝛼⟩ ↦→→ ⟨zero ||𝛼⟩, and
2. 𝑀 ↦→→ succ𝑉 if and only if ⟨J𝑀K ||𝛼⟩ ↦→→ ⟨succ𝑉 ′ ||𝛼⟩,

under both call-by-name and -value evaluation.

Remark 1. Since the 𝜆𝜇𝜇̃-calculus is based on the logic of
Gentzen’s sequent calculus [16], the type system in fig. 5 too
can be viewed as a term assignment for a particular sequent
calculus. In particular, the statement 𝑣 : 𝐴 corresponds to a
proof that𝐴 is true. Dually 𝑒÷𝐴 corresponds to a proof that𝐴
is false, and hence the notation, which can be understood as
a built-in negation − in 𝑒 : −𝐴. As such, the built-in negation
in every 𝑒÷𝐴 (or 𝛼÷𝐴) can be removed by swapping between
the left- and right-hand sides of the turnstyle (⊢), so that 𝑒÷𝐴
on the right becomes 𝑒 : 𝐴 on the left, and 𝛼 ÷𝐴 on the left

A Computational Understanding of Classical (Co)Recursion PPDP ’20, September 8–10, 2020, Bologna, Italy

Types and corecursive alternatives for streams:
𝐴, 𝐵 ::= · · · | strm𝐴 calt ::= {head𝛼 → 𝑒 | tail 𝛽 → 𝛾 .𝑓 }

Extension of call-by-name (co)values:
𝑉 ,𝑊 ::= · · · | corec caltwith 𝑣 𝐸, 𝐹 ::= · · · | head𝐸 | tail𝐸

Extension of call-by-value (co)values:
𝑉 ,𝑊 ::= · · · | corec caltwith𝑉 𝐸, 𝐹 ::= · · · | head 𝑒 | tail 𝑒

Operational reduction rules:
(𝛽head) ⟨corec caltwith𝑉 || head𝐸⟩ ↦→ ⟨𝑉 ||𝑒 [𝐸/𝛼]⟩
(𝛽tail) ⟨corec caltwith𝑉 || tail𝐸⟩

↦→ ⟨𝜇𝛾 .⟨𝑉 ||𝑓 [𝐸/𝛽]⟩||𝜇̃𝑥 .⟨corec caltwith𝑥 ||𝐸⟩⟩
where calt := {head𝛼 → 𝑒 | tail 𝛽 → 𝛾 .𝑓 }.

Figure 6. Stream corecursion in the abstract machine.

Γ ⊢ 𝐸 ÷𝐴
Γ ⊢ head𝐸 ÷ strm𝐴

strm𝐿head
Γ ⊢ 𝐸 ÷ strm𝐴

Γ ⊢ tail𝐸 ÷ strm𝐴
strm𝐿head

Γ, 𝛼 ÷𝐴 ⊢ 𝑒 ÷ 𝐵 Γ, 𝛽 ÷ strm𝐴,𝛾 ÷ 𝐵 ⊢ 𝑓 ÷ 𝐵 Γ ⊢ 𝑉 : 𝐵
Γ ⊢ corec{head𝛼 → 𝑒 | tail 𝛽 → 𝛾 .𝑓 }with𝑉 : strm𝐴

strm𝑅

Figure 7. Typing rules for streams in the abstract machine.

becomes 𝛼 : 𝐴 on the right. Doing so gives a conventional
two-sided sequent calculus as in [4, 11], where the rules
labeled 𝐿 with conclusions of the form 𝑥𝑖 : 𝐵𝑖 , 𝛼 𝑗 ÷𝐶 𝑗 ⊢ 𝑒 ÷𝐴
correspond to left rules of the form 𝑥𝑖 : 𝐵𝑖 | 𝑒 : 𝐴 ⊢ 𝛼 𝑗 : 𝐶 𝑗

in the sequent calculus.

4 Corecursion in an Abstract Machine
Our abstract machine is based on the 𝜆𝜇𝜇̃-calculus, a sym-
metric language reflecting many dualities of classical logic.
Producers (terms) are dual to consumers (coterms), call-by-
value is dual to call-by-name [7, 38], and so on. This sym-
metry can help us answer the question: what is the dual to
recursion, i.e., what is corecursion?

As a prototypical example of a coinductive type, consider
infinite streams of values, chosen for their familiarity (other
coinductive types work just as well), which we will represent
by the type strm𝐴 as given in fig. 6. The intention is that
strm𝐴 is roughly dual to nat, and so we will flip the roles of
terms and coterms belonging to streams. In contrast with nat,
which has constructors for building values, strm𝐴 has two
destructors for building covalues. First, the covalue head𝐸
projects out the first element of its given stream and passes
its value to 𝐸. Second, the covalue tail𝐸 discards the first
element of the stream and passes the remainder of the stream
to 𝐸. Next, in order to define stream values, we have a co-
recursor of the form corec caltwith𝑉 where calt matches
the head and tail destructors above.
The corecursor generates (on the fly) the values of the

streamusing𝑉 as an incremental accumulator or seed, saving
the progress made through the stream so far. In particular,
the base case head𝛼 → 𝑒 matching the head projection

just passes the accumulator to 𝑒 , which (may) return the
current element to the continuation 𝛼 . The corecursive case
tail 𝛽 → 𝛾 .𝑓 also passes the accumulator to 𝑓 , which may
return an updated accumulator (through 𝛾) or circumvent
further corecursion by returning another stream directly to
the remaining projection (via 𝛽).

As with the syntax, the operational semantics in fig. 6 and
typing rules in fig. 7 are roughly symmetric to the rules for
natural numbers, where roles of terms and coterms have
been flipped. As with System T, these typing and operational
rules work together to ensure type safety and termination
when extended with infinite streams.

Theorem 4 (Type safety & Termination). If 𝛼 ÷ nat ⊢ 𝑐
in the (co)recursive abstract machine then 𝑐 ↦→→ ⟨zero ||𝛼⟩ or
𝑐 ↦→→ ⟨succ𝑉 ||𝛼⟩ for some 𝑉 .

Similar to recursion, we can define two special cases of
corecwhich only use part of its functionality by just ignoring
a parameter in the corecursive branch:

cocase { head𝛼 → 𝑒

| tail 𝛽 → 𝑓 }
with𝑉

:=
corec { head𝛼 → 𝑒

| tail 𝛽 → .𝑓 }
with𝑉

coiter { head𝛼 → 𝑒

| tail → 𝛾 .𝑓 }
with𝑉

:=
corec { head𝛼 → 𝑒

| tail → 𝛾 .𝑓 }
with𝑉

Specifically, cocase simply pattern-matches on the projec-
tion of the form head𝛼 or tail 𝛽 without corecursing at all,
whereas coiter always corecurses by providing an updated
accumulator in the tail 𝛽 case without referring to 𝛽 .

As examples, consider the following two streams:

scons 𝑥 (𝑦1, 𝑦2, . . .) = 𝑥,𝑦1, 𝑦2, . . .
count 𝑥 = 𝑥, succ𝑥, succ(succ𝑥), . . .

scons 𝑥 𝑠 appends a new element 𝑥 on top of the stream 𝑠 , and
count 𝑥 counts all the successive natural numbers starting
with 𝑥 . These two definitions can be made formal in terms
of a language with copattern matching [2] like so:

head(scons 𝑥 𝑠) = 𝑥 head(count 𝑥) = 𝑥
tail(scons 𝑥 𝑠) = 𝑠 tail(count 𝑥) = count (succ𝑥)

which correspond to the following uses of corecursion:
scons := 𝜆𝑥.𝜆𝑠. cocase{head𝛼 → 𝛼 | tail 𝛽 → 𝜇̃ .⟨𝑠 ||𝛽⟩}with𝑥

count := 𝜆𝑥. coiter{head𝛼 → 𝛼 | tail→ 𝛾 .𝜇̃𝑥 .⟨succ𝑥 ||𝛾⟩}with𝑥

To see the full generality of corecursion, consider app that
appends a list (serving as the prefix) to a stream (serving as
the suffix):

app [𝑥1, 𝑥2, . . . , 𝑥𝑛] (𝑦1, 𝑦2, . . .) = 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑦1, 𝑦2, . . .
This function can be formally defined in terms of copatterns
and corec, respectively, like so:
head(app nil 𝑦𝑠) = head𝑦𝑠 head(app (cons𝑥) 𝑦𝑠) = 𝑥
tail(app nil 𝑦𝑠) = tail𝑦𝑠 tail(app (cons𝑥 𝑥𝑠) 𝑦𝑠) = app 𝑥𝑠 𝑦𝑠

PPDP ’20, September 8–10, 2020, Bologna, Italy P. Downen and Z.M. Ariola

app := 𝜆𝑥𝑠.𝜆𝑦𝑠. corec
{head𝛼→ case {nil →⟨𝑦𝑠 || head𝛼⟩ | cons𝑥 →⟨𝑥 ||𝛼⟩}
| tail 𝛽→𝛾 . case {nil →⟨𝑦𝑠 || tail 𝛽⟩ | cons𝑥 𝑥𝑠 ′→⟨𝑥𝑠 ′ ||𝛾⟩}}
with𝑥𝑠

Above, the continuation case{nil → 𝑐 | cons𝑥 𝑥𝑠 → 𝑐 ′}
corresponds to the case□ of {nil → 𝑐 | cons𝑥 𝑥𝑠 → 𝑐 ′}
evaluation context for pattern-matching on lists. Note that,
the behavior of the corecursive case for tail 𝛽 depends on
the accumulator: the tail 𝑥𝑠 ′ of a non-empty cons𝑥 𝑥𝑠 ′ is
passed to 𝛾 which updates the corecursive seed for the next
stream destructor, whereas the empty nil triggers the end of
corecursion because 𝛾 is ignored and the suffix stream 𝑦𝑠 is
passed directly to the original continuation tail 𝛽 .

4.1 Properly dual (co)recursive types
Although we derived corecursion from recursion using du-
ality, our prototypical examples of natural numbers and
streams were not perfectly dual to one another. While the
(co)recursive case of tail𝐸 looks similar to succ𝑉 , the base
cases of head𝐸 and zero don’t exactly line up, because head
takes a parameter but zero does not.
One way to perfect the duality is to generalize the nat

type to numbered𝐴: this type represents values of 𝐴 labeled
with a natural number. We can define numbered𝐴 by the
following generalized constructors:

Γ ⊢ 𝑉 : 𝐴
Γ ⊢ zero𝑉 : numbered𝐴

Γ ⊢ 𝑉 : numbered𝐴
Γ ⊢ succ𝑉 : numbered𝐴

zero𝑉 labels the value 𝑉 with 0, and succ𝑉 increments the
numeric label of 𝑉 . With the generalized zero constructor,
we must generalize recursion with an extra parameter:

ralt ::= {zero𝑥 → 𝑣 | succ𝑦 → 𝑧.𝑤}
It turns out that numbered𝐴 is the proper dual to strm𝐴.

In more detail, we can express the duality relation (which
we write as ∼) between values and covalues of these two
types. Assuming that 𝑉 ∼ 𝐸, we have the following duality
between the constructors and destructors:

zero𝑉 ∼ head𝐸 succ𝑉 ∼ tail𝐸

For (co)recursion, we have the following dualities, assuming
𝑣 ∼ 𝑒 (under 𝑥 ∼ 𝛼) and𝑤 ∼ 𝑓 (under 𝑦 ∼ 𝛽 and 𝑧 ∼ 𝛾):

corec{head𝛼 → 𝑒 | tail 𝛽 → 𝛾 .𝑓 }
∼ rec{zero𝑥 → 𝑣 | succ𝑦 → 𝑧.𝑤}

We could also express the proper duality by restricting
streams instead of generalizing numbers. In terms of the
type defined above, nat is isomorphic to numbered⊤, where
⊤ represents the usual unit type with a single value (often
written as ()). Since⊤ corresponds to logical truth, its dual is
the ⊥ type corresponding to logical falsehood with a single
covalue that represents an empty continuation. With this in
mind, the type nat is properly dual to strm⊥, i.e., an infinite
stream of computations that do not return.

From the point of view of polarity in programming lan-
guages [31, 39], the ⊤ type for truth we use in “numbered⊤”
should be interpreted as a positive type (written as 1 in linear
logic [19]). Dually, the ⊥ type for falsehood in “strm⊥” is a
negative type (also called ⊥ in linear logic).

4.2 Corecursion vs coiteration
Recall from section 2 that recursion in call-by-name versus
call-by-value have different algorithmic complexities. The
same holds for corecursion, with the benefit going instead to
call-by-value. For example, consider the scons function for
appending a new element to a stream. Ideally, scons should
not leave a lingering effect on the underlying stream. That
is to say, the tail of scons 𝑥 𝑠 should just be 𝑠 .

This happens directly in call-by-value. Consider indexing
the 𝑛 + 1𝑡ℎ element of scons in call-by-value:

⟨scons ||𝑥 ·𝑠 ·tail𝑛+1 (head𝛼)⟩ ↦→→ ⟨scons𝑥,𝑠 || tail𝑛+1 (head𝛼)⟩ (𝛽→)
↦→→ ⟨𝑠 || tail𝑛 (head𝛼)⟩ (𝛽tail𝜇𝜇̃)

Notice how, after the first tail is resolved, the computation
incurred by scons has completely vanished. In contrast, the
computation of scons continues to linger in call-by-name:

⟨scons ||𝑥 ·𝑠 ·tail𝑛+1 (head𝛼)⟩ ↦→→ ⟨scons𝑥,𝑠 || tail𝑛+1 (head𝛼)⟩ (𝛽→)
↦→→ ⟨scons𝑣1,𝑠 || tail𝑛 (head𝛼)⟩ (𝛽tail 𝜇̃)
where 𝑣1 = 𝜇̃ .⟨𝑥 ||𝜇̃ .⟨𝑠 || tail𝑛 (head𝛼)⟩⟩

Here, we will spend time over the next 𝑛 tail projections to
build up an ever larger accumulator until the head is reached,
even though the result will inevitably just be asking 𝑠 directly.
In this way, the efficiency of corecursion is better in call-by-
value than in call-by-name.

Also recall from section 2.1 that we were able to encode
the recursor in terms of the (apparently) weaker iterator
using pairs. We can do a similar encoding of corecursion in
terms of coiteration using the dual of pairs: sum types. Sum
types in the sequent calculus look like [38]:

⟨left𝑉 || [𝑒1, 𝑒2]⟩ ↦→ ⟨𝑉 ||𝑒1⟩ ⟨right𝑉 || [𝑒1, 𝑒2]⟩ ↦→ ⟨𝑉 ||𝑒2⟩

We can then write the following encoding of corecursion:
corec { head𝛼 → 𝑒

| tail 𝛽 → 𝛾 .𝑓 }
with𝑉

:=

coiter { head𝛼 → [head𝛼, 𝑒]
| tail → [𝛽,𝛾] .[tail 𝛽, 𝑓]}
with right𝑉

Aswith recursion, this encoding forces a performance penalty
for functions like scons which can return a stream directly
in the corecursive case instead of updating the accumulator.

5 Functional, Effectful (Co)recursion
We saw how corecursion, and not just coiteration, can be
expressed inside an abstract machine. How can corecursion
be seen in a more familiar language similar to System T?

Our key insight is that the generality of corecursor is made
possible by control effects equivalent to Scheme’s call/cc

A Computational Understanding of Classical (Co)Recursion PPDP ’20, September 8–10, 2020, Bologna, Italy

𝐴, 𝐵 ::= 𝐴→ 𝐵 | nat | strm𝐴

𝐽, 𝐿 ::= ⟨𝑀 ||𝑄⟩
𝑀, 𝑁 ::= 𝑥 | 𝜇𝛼.𝐽 | 𝜆𝑥 .𝑀 | 𝑀 𝑁

| zero | succ𝑀 | rec𝑀 as ralt
| head𝑀 | tail𝑀 | corec caltwith𝑀

𝑄, 𝑅 ::= 𝛼 | 𝜇̃𝑥 .𝐽
ralt ::= {zero→ 𝑁 | succ𝑥 → 𝑦.𝑀}
calt ::= {head→ 𝑥 .𝑁 | tail 𝛽 → 𝑦.𝑀}

Figure 8. Syntax of 𝜆𝜇𝜇̃ extended with (co)recursion.

Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑄 ÷𝐴
Γ ⊢ ⟨𝑀 ||𝑄⟩ 𝐶𝑢𝑡

Γ, 𝛼 ÷𝐴 ⊢ 𝐽
Γ ⊢ 𝜇𝛼.𝐽 : 𝐴 𝐴𝑐𝑡

Γ, 𝑥 : 𝐴 ⊢ 𝐽
Γ ⊢ 𝜇̃𝑥 .𝐽 ÷𝐴 𝐶𝑜𝐴𝑐𝑡

Γ ⊢ 𝑀 : strm𝐴

Γ ⊢ head𝑀 : 𝐴
strm𝐼head

Γ ⊢ 𝑀 : strm𝐴

Γ ⊢ tail𝑀 : strm𝐴
strm𝐼tail

Γ, 𝑥 : 𝐵 ⊢ 𝑁 : 𝐴 Γ, 𝛽 ÷ strm𝐴,𝑦 : 𝐵 ⊢ 𝑁 ′ : 𝐵 Γ ⊢ 𝑀 : 𝐵
Γ ⊢ corec{head→ 𝑥 .𝑁 | tail 𝛽 → 𝑦.𝑁 ′}with𝑀 : strm𝐴

strm𝐸

Figure 9. Type system for corecursion in 𝜆𝜇𝜇̃.

Call-by-name values (𝑉), covalues (𝐾), and evaluation contexts (𝐸):

𝑉 ,𝑊 ::= 𝑀 𝐾,𝐻 ::= 𝛼
𝐸, 𝐹 ::= □ | 𝐸 𝑁 | rec𝐸 as ralt | head𝐸 | tail𝐸 | ⟨𝐸 ||𝐾⟩

Call-by-value values, covalues, and evaluation contexts:

𝑉 ,𝑊 ::= 𝑥 | 𝜆𝑥 .𝑀 | zero | succ𝑉 | corec caltwith𝑉
𝐾,𝐻 ::= 𝑄
𝐸, 𝐹 ::= □ | 𝐸 𝑁 | 𝑉 𝐸 | succ𝐸 | rec𝐸 as ralt

| head𝐸 | tail𝐸 | corec caltwith𝐸 | ⟨𝐸 ||𝐾⟩
Operational reduction rules:

(𝜇) ⟨𝐸 [𝜇𝛼.𝐽] ||𝐾⟩ ↦→ 𝐽 [⟨𝐸 [𝑀] ||𝐾⟩/⟨𝑀 ||𝛼⟩]
(𝜇̃) ⟨𝑉 ||𝜇̃𝑥 .𝐽 ⟩ ↦→ 𝐽 [𝑉 /𝑥]
(𝛽→) (𝜆𝑥.𝑀) 𝑉 ↦→ 𝑀 [𝑉 /𝑥]
(𝛽zero) rec zero as ralt ↦→ 𝑁

(𝛽succ) rec succ𝑉 as ralt ↦→ 𝜇𝛼.⟨rec𝑉 as ralt ||𝜇̃𝑦.⟨𝑁 [𝑉 /𝑥] ||𝛼⟩⟩

(𝛽head) head(corec caltwith𝑉) ↦→ 𝑁 [𝑉 /𝑥]
(𝛽tail) ⟨𝐸 [tail(corec caltwith𝑉)] ||𝐾⟩

↦→ ⟨𝐸 [corec caltwith𝑁 ′[𝑉 /𝑦, ⟨𝐸 [𝑀] ||𝐾⟩/⟨𝑀 ||𝛽⟩]] ||𝐾⟩
Where ralt := {zero→ 𝑁 | succ𝑥 → 𝑦.𝑁 ′} and
calt := {head→ 𝑥 .𝑁 | tail 𝛽 → 𝑦.𝑁 ′} above.

Figure 10. Operational semantics for (co)recursion in 𝜆𝜇𝜇̃.

operator. The corecursive branch is given access to two con-
tinuations: one to update the accumulator and continue the
corecursion, and the other to end corecursion early by pro-
viding another stream in its entirety.

Our functional language for expressing corecursion is
based on the 𝜆𝜇𝜇̃-calculus [8]—an extension of Parigot’s
𝜆𝜇-calculus [33] with 𝜇̃-abstractions—as shown in fig. 8. In

addition to everything from System T, this language has 𝜇-
abstractions (𝜇𝛼.𝐽) and jumps (⟨𝑀 ||𝑄⟩) from the 𝜆𝜇-calculus,
along with the dual 𝜇̃-abstractions (𝜇̃𝑥 .𝐽). Intuitively, the 𝜇𝜇̃–
abstractions serve the same role as in the abstract machine—
assigning a name to the continuation of a term or the value
given to a continuation, respectively—but now appear in the
context of a direct-style, functional language.

The corecursor corec caltwith𝑀 appears almost the same
as it did in the abstract machine (albeit slightly generalized
so that the accumulator𝑀 does not need to be a value), but
the stream alternatives calt are written in a different from,
{head → 𝑥 .𝑁 | tail 𝛽 → 𝑦.𝑀}, so that corecursion can be
written entirely with terms. Similarly, the stream projections
now appear as terms rather than coterms. head𝑀 returns the
first element of a stream𝑀 , and tail𝑀 returns the remaining
elements of 𝑀 . In total, the syntax of this 𝜆𝜇𝜇̃-calculus is
biased toward terms, where the only coterms are labels (i.e.,
covariables 𝛼) or abstractions (𝜇̃𝑥 .𝐽).

As before, we canmacro-define the special cases for cocase
and coiter as ignoring the unneeded parameters of corec
(and the unneeded accumulator for cocase):

cocase {head→ 𝑁

| tail → 𝑀} :=
corec { head → .𝑁

| tail𝛼 → .𝜇 .⟨𝑀 ||𝛼⟩}
with zero

coiter { head→ 𝑥 .𝑁

| tail → 𝑦.𝑁 ′}
with𝑀

:=
corec { head → 𝑥 .𝑁

| tail → 𝑦.𝑁 ′}
with𝑀

The intuitive understanding is that cocase introduces a stream
whose first element is exactly 𝑁 and remainder is𝑀 , analo-
gous to scons previously in section 4, so that:

head(cocase{head→ 𝑁 | tail→ 𝑀}) = 𝑁
tail(cocase{head→ 𝑁 | tail→ 𝑀}) = 𝑀

As we saw with scons, call-by-value evaluation reaches these
results directly but it may take (arbitrarily many) steps with
call-by-name evaluation. coiter can be read as an endless
loop that either returns the current element (given by binding
the value of𝑀 to 𝑥 in 𝑁) or calculates the remaining stream
by updating its internal state (given by binding𝑀 to 𝑦 in 𝑁).
However, there is no opportunity for coiter to avoid updating
the internal state in the tail case, and so the coiteration will
continue no matter how deeply the stream is inspected.

The type system for the (co)recursive 𝜆𝜇𝜇̃-calculus extends
the one for System T with additional typing rules given in
fig. 9. As with the abstract machine, we have judgments for
checking that a continuation 𝑄 accepts an input of type 𝐴
(written Γ ⊢ 𝑄 ÷𝐴) and that a jump 𝐽 is well-typed (written
Γ ⊢ 𝐽). Writing the type for a continuation of 𝐴 as the nega-
tion −𝐴 (recall remark 1), we can view the stream operations

PPDP ’20, September 8–10, 2020, Bologna, Italy P. Downen and Z.M. Ariola

as primitive constants with the following types:
head : strm𝐴→ 𝐴 tail : strm𝐴→ strm𝐴

cocasestrm𝐴 : 𝐴→ strm𝐴→ strm𝐴

coiter𝐵strm𝐴 : (𝐵→𝐴) → (𝐵→𝐵) → 𝐵 → strm𝐴

corec𝐵strm𝐴 : (𝐵→𝐴) → (−(strm𝐴)→𝐵→𝐵) → 𝐵 → strm𝐴

The operational semantics for (co)recursion is given in
fig. 10. The rules for functions (𝛽→) and recursion (𝛽zero, 𝛽succ)
are the same as from fig. 3. The 𝜇 rule states how the evalua-
tion context is captured by 𝜇𝛼.𝐽 and the 𝜇̃ rule states how
values are bound by 𝜇̃𝑥 .𝐽 , after which the jump 𝐽 is per-
formed in either case. The 𝜇 rule makes use of structural
substitution to substitute an evaluation context (𝐸) for a co-
variable (𝛼), written as 𝐽 [𝐸 [𝑀]/⟨𝛼 ||𝑀⟩] in general, meaning
that every jump of the form ⟨𝛼 ||𝑀⟩ inside 𝐽 (where 𝛼 ap-
pears free) is replaced by 𝐸 [𝑀]. Note that to be syntactically
well-formed, the left- and right-hand-sides of the 𝜇 rule are
both jumps. The 𝛽head rule projects out the first element of
a corecursive stream by substituting the accumulator for
the variable bound by the head case. The 𝛽tail rule projects
out the remainder of a corecursive stream by updating the
accumulator. This update performs two important bindings
required by the tail case: (a) the current value of the accumu-
lator is substituted for the bound variable, and (b) the current
evaluation context is substituted for the covariable bound by
the copattern tail 𝛽 . As such, the 𝛽tail reduction may result in
a new accumulator if this computation returns normally, or
it may jump to 𝛽 and provide an altogether different stream.

The reduction theory of the (co)recursive 𝜆𝜇𝜇̃-calculus is
written as 𝐽 → 𝐽 ′ (and similar for (co)terms) and includes
the compatible closure of the operational rules (that is, they
may be applied in any context, not just evaluation contexts).
We also include the following additional rule in the reduction
theory, which accounts for administrative reductions that
bind arbitrary terms inside of an evaluation context:

(𝜍) ⟨𝑀 ||𝜇̃𝑥 .𝐸 [𝑥]⟩ → 𝐸 [𝑀]
𝜍 reduction completes the correspondence with the abstract
machine, given by this extension of the System T translation:

J⟨𝑀 ||𝑄⟩K := ⟨J𝑀K ||J𝑄K⟩

J𝛼K := 𝛼
J𝜇̃𝑥 .𝐽 K := 𝜇̃𝑥 .J𝐽 K

Jhead𝑀K := 𝜇𝛼.⟨J𝑀K || head𝛼⟩
Jtail𝑀K := 𝜇𝛼.⟨J𝑀K || tail𝛼⟩

Jcorec caltwith𝑀K := 𝜇𝛼.⟨J𝑀K ||𝜇̃𝑥 .⟨corec JcaltK with𝑥 ||𝛼⟩⟩

J{head→ 𝑥 .𝑁 | tail 𝛽 → 𝑦.𝑀}K
:= {head𝛼 → 𝜇̃𝑥 .⟨J𝑁 K ||𝛼⟩ | tail 𝛽 → 𝛾 .𝜇̃𝑦.⟨J𝑀K ||𝛾⟩}

This translation preserves both the types and operations of
the (co)recursive 𝜆𝜇𝜇̃-calculus in the abstract machine.

Theorem 5 (Type Preservation). Γ ⊢ 𝐽 in (co)recursive 𝜆𝜇 if
and only if Γ ⊢ J𝐽 K, and analogously for (co)terms.

Theorem 6 (Operational correspondence). For any jump
𝛼 ÷ nat ⊢ 𝐽 in (co)recursive 𝜆𝜇, under both call-by-name and
-value evaluation:

1. 𝐽 ↦→→ ⟨zero ||𝛼⟩ if and only if J𝐽 K ↦→→ ⟨zero ||𝛼⟩, and
2. 𝐽 ↦→→ ⟨succ𝑉 ||𝛼⟩ if and only if J𝐽 K ↦→→ ⟨succ𝑉 ′ ||𝛼⟩.

The example streams repeat 𝑥 = 𝑥, 𝑥, 𝑥, . . . and alt =

0, 1, 0, 1, . . . can be written in terms of corecursion like so:

repeat := 𝜆𝑥. coiter{head→ 𝑦.𝑦 | tail→ 𝑧.𝑧}with𝑥
flip := 𝜆𝑥. case𝑥 of{zero→ succ zero | succ → zero}
alt := coiter{head→ 𝑥 .𝑥 | tail→ 𝑥 .flip 𝑥}with zero

Notice that the operational semantics of fig. 10 gives alter-
nating outputs for the elements of alt:

⟨head alt ||𝛼⟩ ↦→ ⟨zero ||𝛼⟩
⟨head(tail alt) ||𝛼⟩ ↦→→ ⟨head alt ′ ||𝛼⟩ ↦→ ⟨succ zero ||𝛼⟩

⟨head(tail(tail alt)) ||𝛼⟩ ↦→→ ⟨head alt ||𝛼⟩ ↦→ ⟨zero||𝛼⟩

and so on, where the intermediate state of the stream is
alt ′ := coiter{head→ 𝑥 .𝑥 | tail→ 𝑥 .flip 𝑥}with succ zero.

5.1 A corecursive coeliminator
Recall from section 4.1 that in the abstract machine, recursion
and cocorecursion are perfectly dual to one another for dual
types. The recursor has an internal state in the form of a
covalue (i.e., continuation) keeping track of the call stack
built up by each step of recursion, whereas the corecursor
has an internal state in the form of a value (i.e., accumulator)
that keeping of the progress made from one element to the
next as projections are made deeper into the stream.
Yet, in the 𝜆𝜇𝜇̃-calculus, the recursor and corecursor no

longer appear dual at all: the corecursor still has its inter-
nal state but the recursor just returns a result, seemingly
statelessly. How can the duality between these two forms be
restored? The mismatch is born from the fact that introduc-
tions and eliminations of terms are not dual do each other
in the sense we need. Instead, an elimination of terms is
symmetric to an elimination of coterms, i.e., a coelimination.
Coeliminators for functions have appeared before [6, 32],
which has been used to study the issues of confluence [27]
and head normalization [26] with control effects. We can
derive a similar form of coelimination for streams here, us-
ing 𝜇̃-abstractions. First, the head and tail projections can be
defined via macro-expansion as coterms like so:

head𝑄 := 𝜇̃𝑥 .⟨head𝑥 ||𝑄⟩ tail𝑄 := 𝜇̃𝑥 .⟨tail𝑥 ||𝑄⟩

From there, we can give the following syntactic sugar for
corecursion defined by eliminating these two coterms:

corec𝑄 as
{ head𝛼 → 𝑅

| tail 𝛽 → 𝛾 .𝑅′}
:=

𝜇̃𝑥 .⟨corec { head → 𝑧.𝜇𝛼 .⟨𝑧 ||𝑅⟩
| tail 𝛽 → 𝑦.𝜇𝛾 .⟨𝑦 ||𝑅′⟩}
with𝑥

|| 𝑄 ⟩

A Computational Understanding of Classical (Co)Recursion PPDP ’20, September 8–10, 2020, Bologna, Italy

The new definitions allow us to derive these reductions:

corec head𝐾 as calt →→ 𝑅 [𝐾/𝛼]
corec tail𝐾 as calt →→ 𝜇̃𝑥 .⟨𝜇𝛾 .⟨𝑥 ||𝑅′[𝐾/𝛽]⟩|| corec𝐾 as calt⟩

This provides us an alternative understanding of corecursion:
rather than focusing on generating some infinite object, we
can instead focus on processing a finite observation. In other
words, we can write corecursive definitions in the same style
as recursion on the natural numbers, with the twist that we
are calculating a question rather than an answer.

As an example, we can write definitions for the streams

evens (𝑥0, 𝑥1, . . .) = 𝑥0, 𝑥2, 𝑥4, . . . odds (𝑥0, 𝑥1, . . .) = 𝑥1, 𝑥3, 𝑥5, . . .
merge (𝑥0, 𝑥1, . . .) (𝑦0, 𝑦1, . . .) = 𝑥0, 𝑦0, 𝑥1, 𝑦1, . . .

using pairs and the coeliminator above as follows:

evens := 𝜆𝑠.𝜇𝛾 .⟨𝑠 ||corec𝛾 as { head𝛼 → head𝛼
| tail → 𝛽. tail(tail 𝛽)}⟩

odds := 𝜆𝑠.𝜇𝛾 .⟨𝑠 ||corec𝛾 as { head𝛼 → tail(head𝛼)
| tail → 𝛽. tail(tail 𝛽)}⟩

merge := 𝜆𝑠.𝜆𝑠 ′.𝜇𝛾 .⟨(𝑠, 𝑠 ′) ||corec𝛾{ head𝛼→𝜇̃ (𝑠,) .⟨𝑠 || head𝛼⟩
| tail →𝛾 .𝜇̃ (𝑠, 𝑠 ′) .⟨(𝑠 ′, tail 𝑠) ||𝛾⟩}⟩

6 Syntactic (Co)Inductive Reasoning
We have examined how to define (co)recursive programs and
compute their results, but how can we reason about when ex-
pressions are equivalent? It’s unsatisfactory to only consider
two expressions equal when they reduce to some common
reduct; that misses out on far too many equalities. For exam-
ple, it is easy to show by reduction that plus zero𝑥 ↦→→ 𝑥 be-
cause plus was defined by recursion on its first argument, but
plus 𝑥 zero doesn’t reduce at all, even though it is nonethe-
less equivalent to zero in any context. Likewise, evens alt
and repeat zero are both equivalent to the same stream
(0, 0, 0, . . .), but how do we prove it? To answer these ques-
tions, we develop a syntactic equational theory with notions
of induction and coinduction dual to one another.

6.1 Equational theory of the abstract machine
The equational theory for the abstract machine is given in
fig. 11. All judgments have the form Γ ⊢ Φ, where Γ is the
assumptions and Φ is the property being proved. The main
properties are the base equalities for commands (𝑐 = 𝑐 ′) and
(co)terms of some type 𝐴 (𝑣 = 𝑣 ′ : 𝐴 and 𝑒 = 𝑒 ′÷ 𝐴). In addi-
tion, properties may universally quantify over (co)variables
(∀𝑥 :𝐴.Φ and ∀𝛼÷𝐴.Φ), or depend on the truth of another
property (Φ′ ⇒ Φ). These latter three forms of properties
will turn out to be essential for proving equalities that re-
quire amore general (co)inductive hypothesis. (Co)-inductive
hypotheses can be stored in the environment as Γ,Φ. Addi-
tionally, we have two special cases for properties. A property
Ψ(𝑥) is strict on 𝑥 because it uses 𝑥 directly with some co-
value on both sides of its equality. Dually, a property Ψ(𝛼)

Properties (Φ), strict (Ψ(𝑥)) and productive (Ψ(𝛼)) properties, hy-
pothesis (𝜃), environments (Γ), and judgments:

Φ ::= 𝑐 = 𝑐 ′ | 𝑣 = 𝑣 ′ :𝐴 | 𝑒 = 𝑒 ′ ÷𝐴 | ∀𝑥 :𝐴.Φ | ∀𝛼÷𝐴.Φ | Φ′⇒Φ

Ψ(𝑥) ::= ⟨𝑥 ||𝐸⟩ = ⟨𝑥 ||𝐸 ′⟩ | ∀𝑦:𝐴.Ψ(𝑥) | ∀𝛼÷𝐴.Ψ(𝑥) (𝑦 ≠ 𝑥)
Ψ(𝛼) ::= ⟨𝑉 ||𝛼⟩ = ⟨𝑉 ′ ||𝛼⟩ | ∀𝑥 :𝐴.Ψ(𝛼) | ∀𝛽÷𝐴.Ψ(𝛼) (𝛽 ≠ 𝛼)

Γ ::= • | Γ, 𝑥 : 𝐴 | Γ, 𝛼 ÷𝐴 | Γ,Φ Judge ::= Γ ⊢ Φ
Equality of computation (plus rules for reflexivity, symmetry, tran-
sitivity, and compatibility of equality):

Γ ⊢ 𝑐 𝑐 ↦→ 𝑐 ′

Γ ⊢ 𝑐 = 𝑐 ′ 𝑅𝑒𝑑

Induction, coinduction, and extensionality principles:
Γ, 𝑥 : 𝐴 ⊢ ⟨𝑥 ||𝑒⟩ = ⟨𝑥 ||𝑒 ′⟩

Γ ⊢ 𝑒 = 𝑒 ′ ÷𝐴
𝜎𝜇̃

Γ, 𝛼 ÷𝐴 ⊢ ⟨𝑣 ||𝛼⟩ = ⟨𝑣 ′ ||𝛼⟩
Γ ⊢ 𝑣 = 𝑣 ′ : 𝐴

𝜎𝜇

Γ, 𝑥 : 𝐴, 𝛽 ÷ 𝐵 ⊢ Ψ(𝑥 · 𝛽/𝛼)
Γ, 𝛼 ÷𝐴→ 𝐵 ⊢ Ψ(𝛼)

𝜔→

Γ ⊢ Ψ(zero/𝑥) Γ, 𝑥 : nat,Ψ(𝑥) ⊢ Ψ(succ𝑥/𝑥)
Γ, 𝑥 : nat ⊢ Ψ(𝑥) 𝜔nat

Γ, 𝛽÷𝐴 ⊢ Ψ(head 𝛽/𝛼) Γ, 𝛼÷ strm𝐴,Ψ(𝛼) ⊢ Ψ(tail𝛼/𝛼)
Γ, 𝛼 ÷ strm𝐴 ⊢ Ψ(𝛼) 𝜔strm

Rules of properties:

Γ,Φ ⊢ Φ Ax
Γ, succ𝑉 = zero : nat ⊢ Φ Coher

Γ,Φ′ ⊢ Φ
Γ ⊢ Φ′ ⇒ Φ

IntroH Γ ⊢ Φ′ ⇒ Φ Γ ⊢ Φ′
Γ ⊢ Φ Lemm

Γ, 𝑥 : 𝐴 ⊢ Φ
Γ ⊢ ∀𝑥 :𝐴.Φ IntroL

Γ ⊢ ∀𝑥 :𝐴.Φ Γ ⊢ 𝑉 = 𝑉 ′ : 𝐴
Γ ⊢ Φ[𝑉 /𝑥 = 𝑉 ′/𝑥] SubstL

Γ, 𝛼 ÷𝐴 ⊢ Φ
Γ ⊢ ∀𝛼÷𝐴.Φ IntroR

Γ ⊢ ∀𝛼÷𝐴.Φ Γ ⊢ 𝐸 = 𝐸 ′ ÷𝐴
Γ ⊢ Φ[𝐸/𝛼 = 𝐸 ′/𝛼] SubstR

Figure 11. Equational theory of (co)induction in the abstract
machine.

is productive on 𝛼 because it immediately returns a value to
𝛼 on both side of its equality.

The general rules for properties formalize their intuitive
meaning above in the equational theory. Ax says we can con-
clude assumptions are true, while Coher says zero = succ𝑉
is an incoherent assumption. IntroH and Lemm introduce
an assumption or eliminate an assumption by proving the
required property as a side lemma. Quantifiers can be intro-
duced when their property holds on a generic (co)variable
(IntroL and IntroR), and eliminated by substituting any equal
(co)value for the bound (co)variable (SubstL and SubstR).
The notation Φ[𝑉 /𝑥 = 𝑉 ′/𝑥] (and likewise Φ[𝐸/𝛼 = 𝐸 ′/𝛼])
means to perform the substitution [𝑉 /𝑥] on the left-hand
side of all equations in Φ and [𝑉 ′/𝑥] on the right-hand sides.

The Red rule states that reduction steps of the operational
semantics count as equalities, and the reflexivity, symme-
try, transitivity, and compatibility rules are standard for an
equational theory. The 𝜎𝜇̃ and 𝜎𝜇 rules establish a logical
equivalence between equality of commands versus equality
of (co)terms. They say that any two terms (dually coterms)

PPDP ’20, September 8–10, 2020, Bologna, Italy P. Downen and Z.M. Ariola

are equal when they form equal commands with a generic
covariable (dually variable). These inference rules allow us to
derive the extensionality 𝜂 axioms for 𝜇- and 𝜇̃-abstractions
in the 𝜆𝜇𝜇̃-calculus for any term Γ ⊢ 𝑣 : 𝐴 or coterm Γ ⊢ 𝑒÷𝐴:
(𝜂𝜇) Γ ⊢ 𝜇𝛼.⟨𝑣 ||𝛼⟩ = 𝑣 : 𝐴 (𝜂𝜇̃) Γ ⊢ 𝜇̃𝑥 .⟨𝑥 ||𝑒⟩ = 𝑒 ÷𝐴

Similarly, the 𝜔→ rule expresses a form of extensionality
for functions in terms of call stacks—it is sufficient to test a
productive property on a generic call stack—that can derive
the more usual 𝜂 axiom for functions in 𝜆𝜇𝜇̃:

(𝜂→) Γ ⊢ 𝜆𝑥.𝜇𝛼.⟨𝑉 ||𝑥 · 𝛼⟩ = 𝑉 : 𝐴→ 𝐵

The restriction of 𝜔→ to productive properties corresponds
to the usual restriction of the 𝜂 axiom in the call-by-value
𝜆-calculus: 𝜆𝑥 .𝑀 𝑥 ≠ 𝑀 when 𝑀 is not equal to a value.
This prevents equalities like 𝜆 .𝜇 .⟨zero ||𝛼⟩ = 𝜇 .⟨zero ||𝛼⟩,
that are incoherent under call-by-value evaluation. For ex-
ample, with 𝑒1 := 𝜇̃ .⟨succ zero ||𝛼⟩, we have on the one
hand ⟨𝜆 .𝜇 .⟨zero ||𝛼⟩||𝑒1⟩ ↦→→ ⟨succ zero ||𝛼⟩, whereas on the
other hand ⟨𝜇 .⟨zero ||𝛼⟩||𝑒1⟩ ↦→→ ⟨zero ||𝛼⟩.

The most interesting rules of the equation theory are the
ones for (co)induction. The 𝜔nat rule corresponds to the fol-
lowing weak induction property on the natural numbers, and
𝜔strm corresponds to the dual weak coinduction property:
(𝜔nat) Ψ(zero) ⇒ (∀𝑥 :nat.Ψ(𝑥)⇒Ψ(succ𝑥)) ⇒ (∀𝑥 :nat.Ψ(𝑥))

(𝜔strm) (∀𝛽÷𝐴.Ψ(head 𝛽)) ⇒ (∀𝛼÷ strm𝐴.Ψ(𝛼)⇒Ψ(tail𝛼))
⇒ (∀𝛼÷ strm𝐴.Ψ(𝛼))

Notice that both of these rules for induction and coinduction
are restricted to strict and productive properties, respectively.
Reminiscent of [34], this restriction prevents the same kinds
of incoherence issues as the above one for functions, which
we will return to in more detail in section 6.3. For now, the
primary fact about this (co)inductive equational theory is
that it is coherent for either evaluation strategy.

Definition 1 (Coherence). An equational theory for the
(co)recursive abstract machine is coherent if 𝛼 ÷nat ⊢ 𝑐1 = 𝑐2
implies either:

1. 𝑐𝑖 ↦→→ ⟨zero ||𝛼⟩ for both 𝑖 = 1, 2, or
2. 𝑐𝑖 ↦→→ ⟨succ𝑉𝑖 ||𝛼⟩ for some 𝑉𝑖 and both 𝑖 = 1, 2.

Theorem 7. The equational theory in fig. 11 is coherent for
both call-by-value and call-by-name evaluation.

To better understand (co)induction,𝜔nat and𝜔strm prove
the following properties about (co)iteration:

(𝛿nat) ∀𝛼÷nat. iter
{zero→ zero
succ→ 𝑦. succ𝑦

}
with𝛼 = 𝛼 ÷ nat

(𝛿strm) ∀𝑥 : strm𝐴. coiter
{head𝛼 → head𝛼

tail→ 𝛽. tail 𝛽

}
with𝑥 = 𝑥 : strm𝐴

Intuitively, these are deep extensionality axioms for the re-
cursor and corecursor. Any generic observer 𝛼 cannot tell
the difference if a natural number is first broken down and
rebuilt from scratch from the base case (zero) up. Likewise,

any generic stream 𝑥 gives the same response when its pro-
jection is broken down and rebuilt from scratch from the
base case (head𝛼) up. Now, consider how to prove 𝛿strm.
After supposing a generic observation 𝛼÷ strm𝐴 (𝜎𝜇) inside
the quantifier for 𝑥 (IntroL, SubstL, ReflR), it suffices to show:
𝛼÷ strm𝐴 ⊢ ∀𝑥 : strm𝐴.

⟨coiter{head𝛼 → head𝛼 | tail→ 𝛽. tail 𝛽}with𝑥 ||𝛼⟩ = ⟨𝑥 ||𝛼⟩
Notice that this property is productive on 𝛼 , so we may ap-
ply 𝜔strm. The remaining calculations for the two premises
of 𝜔strm continue as follows, where we make use of the
shorthand cdeep := {head𝛼 → head𝛼 | tail→ 𝛽. tail 𝛽}:
• For head 𝛽/𝛼 , we have the calculation:
⟨coiter cdeepwith𝑥 || head 𝛽⟩ ↦→ ⟨𝑥 || head 𝛽⟩ (𝛽head)
• For tail 𝛽/𝛼 , assume the coinductive hypothesis (𝐶𝐼𝐻)
∀𝑥 : strm𝐴.⟨coiter cdeepwith𝑥 ||𝛽⟩ = ⟨𝑥 ||𝛽⟩, sowe have
the following calculation in call-by-value and -name:
⟨coiter cdeepwith𝑥 || tail 𝛽⟩
↦→ ⟨𝜇𝛽.⟨𝑥 || tail 𝛽⟩||𝜇̃𝑦.⟨coiter cdeepwith𝑦 ||𝛽⟩⟩ (𝛽tail)
= ⟨𝜇𝛽.⟨𝑥 || tail 𝛽⟩||𝜇̃𝑦.⟨𝑦 ||𝛽⟩⟩ (𝐶𝐼𝐻 [𝑦/𝑥])
= ⟨𝜇𝛽.⟨𝑥 || tail 𝛽⟩||𝛽⟩ (𝜂𝜇̃)
↦→ ⟨𝑥 || tail 𝛽⟩ (𝜇)
Note that the generalization over 𝑥 in the coinductive
hypothesis is essential for instantiating 𝑥 (via SubstL)
with the bound 𝑦 newly introduced by 𝛽tail reduction.

Analogously to the “deep” extensionality properties 𝛿nat
and 𝛿strm of (co)iteration, we can also derive the following
“shallow” extensionality properties 𝜂nat and 𝜂strm for per-
forming (co)case analysis on the structure of a numeric value
or a stream projection:

(𝜂nat) ∀𝛼÷nat. case
{ zero→ zero
succ𝑦 → succ𝑦

}
with𝛼 = 𝛼 ÷ nat

(𝜂strm) ∀𝑥 : strm𝐴. cocase
{head𝛼 → head𝛼

tail 𝛽 → tail 𝛽

}
with𝑥 = 𝑥 : strm𝐴

6.2 Equational theory of the 𝜆𝜇𝜇̃-calculus
Instead of reasoning in the lower-level language of the ab-
stract machine, we can also reason directly in the higher-
level language of 𝜆𝜇𝜇̃ using the equational theory given in
fig. 12. This theory is closer to the 𝜆-calculus. For example
the familiar 𝜂 axiom can be proved from 𝜔→:

(𝜂→) Γ ⊢ 𝜆𝑥.𝑉 𝑥 = 𝑉 : 𝐴→ 𝐵

The two theories correspond to one another, by pointwise
extending the translation of 𝜆𝜇𝜇̃ over Φ and Γ.

Theorem 8 (Soundness & Completeness). Γ ⊢Φ iff JΓK⊢JΦK.

For example, we can prove evens alt = repeat zero : strm𝐴.
By applying 𝜎𝜇, it suffices to show that

𝛼 ÷ strmnat ⊢ ⟨evens alt ||𝛼⟩ = ⟨repeat zero||𝛼⟩
Both sides can reduce to a productive property on 𝛼 (that
is to say, ⟨evens alt ||𝛼⟩ ↦→→ ⟨evensalt ||𝛼⟩ for a closed value

A Computational Understanding of Classical (Co)Recursion PPDP ’20, September 8–10, 2020, Bologna, Italy

Properties (Φ), strict (Ψ(𝑥)) and productive (Ψ(𝛼)) properties, hy-
pothesis (𝜃), environments (Γ), and judgments:

Φ ::= 𝐽 = 𝐽 ′ |𝑀 =𝑀 ′:𝐴 |𝑄 =𝑄 ′÷𝐴 | ∀𝑥 :𝐴.Φ | ∀𝛼÷𝐴.Φ |Φ′⇒Φ

Ψ(𝑥) ::= 𝐸 [𝑥] =𝐸 ′[𝑥] | 𝐸 [𝑥] =𝐸 ′[𝑥]:𝐴 | ∀𝑦:𝐴.Ψ(𝑥) | ∀𝛼÷𝐴.Ψ(𝑥)
Ψ(𝛼) ::= ⟨𝑉 ||𝛼⟩ = ⟨𝑉 ′ ||𝛼⟩ | ∀𝑥 :𝐴.Ψ(𝛼) | ∀𝛽÷𝐴.Ψ(𝛼)

Γ ::= • | Γ, 𝑥 : 𝐴 | Γ, 𝛼 ÷𝐴 | Γ,Φ Judge ::= Γ ⊢ Φ
Equality of computation (plus rules for reflexivity, symmetry, tran-
sitivity, and compatibility of equality):
Γ ⊢ 𝐽 𝐽→ 𝐽 ′

Γ ⊢ 𝐽 = 𝐽 ′ Red
Γ ⊢𝑀 :𝐴 𝑀→𝑀 ′

Γ ⊢ 𝑀 = 𝑀 ′ : 𝐴 Red
Γ ⊢𝑄 ÷𝐴 𝑄→𝑄 ′

Γ ⊢ 𝑄 = 𝑄 ′ ÷𝐴 Red

Induction, coinduction, and extensionality principles:
Γ, 𝛼÷𝐴 ⊢ ⟨𝑀 ||𝛼⟩ = ⟨𝑀 ′ ||𝛼⟩

Γ ⊢ 𝑀 = 𝑀 ′ : 𝐴
𝜎𝜇

Γ, 𝑥 :𝐴 ⊢ ⟨𝑥 ||𝑄⟩ = ⟨𝑥 ||𝑄 ′⟩
Γ ⊢ 𝑄 = 𝑄 ′ ÷𝐴

𝜎𝜇̃

Γ, 𝑥 : 𝐴 ⊢ 𝑉 𝑥 = 𝑉 ′ 𝑥 : 𝐵
Γ ⊢ 𝑉 = 𝑉 ′ : 𝐴→ 𝐵

𝜔→

Γ ⊢ Ψ(zero/𝑥) Γ, 𝑥 : nat,Ψ(𝑥) ⊢ Ψ(succ𝑥/𝑥)
Γ, 𝑥 : nat ⊢ Ψ(𝑥) 𝜔nat

Γ, 𝛽 ÷𝐴 ⊢ Ψ(⟨head𝑀 ||𝛽⟩/⟨𝑀 ||𝛼⟩)
Γ, 𝛼 ÷ strm𝐴,Ψ(𝛼) ⊢ Ψ(⟨tail𝑀 ||𝛼⟩/⟨𝑀 ||𝛼⟩)

Γ, 𝛼 ÷ strm𝐴 ⊢ Ψ(𝛼) 𝜔strm

Plus the same rules of properties as fig. 11.
Figure 12. Equational theory of (co)induction in 𝜆𝜇𝜇̃.

Γ ⊢ Φ[zero/𝑥] Γ, 𝑥 : nat,Φ ⊢ Φ[succ𝑥/𝑥]
Γ, 𝑥 : nat ⊢ Φ 𝜎nat

Γ, 𝛽 ÷𝐴 ⊢ Φ[head 𝛽/𝛼] Γ, 𝛼 ÷ strm𝐴,Φ ⊢ Φ[tail𝛼/𝛼]
Γ, 𝛼 ÷ strm𝐴 ⊢ Φ 𝜎strm

Figure 13. Strong (co)induction in the abstract machine.

evensalt and likewise ⟨repeat zero ||𝛼⟩ ↦→ ⟨repeatzero ||𝛼⟩), so
we can apply 𝜔nat to this reduced equality. The remaining
calculations for the two premises of 𝜔nat are as follows:
• For head 𝛽/𝛼 , we have the calculation:

⟨evensalt || head 𝛽⟩ ↦→→ ⟨alt || head 𝛽⟩
↦→ ⟨zero ||𝛽⟩ ←[⟨repeatzero || head 𝛽⟩

• For tail 𝛽/𝛼 , assume the coinductive hypothesis (𝐶𝐼𝐻)
⟨evensalt ||𝛽⟩ = ⟨repeatzero ||𝛽⟩, so we have the following
calculation in both call-by-value and call-by-name:

⟨evensalt || tail 𝛽⟩ ↦→→ ⟨evenstail(tail alt) ||𝛽⟩ (evens)
= ⟨evensalt ||𝛽⟩ (alt)
= ⟨repeatzero ||𝛽⟩ (𝐶𝐼𝐻)
←←[⟨repeatzero || tail 𝛽⟩ (repeat)

6.3 Strong (co)induction
The form of (co)induction we have considered so far is weak,
and necessarily so since in some cases a stronger rule would
be incoherent. But this raises the question: when is strong

Γ ⊢ Φ[zero/𝑥] Γ, 𝑥 : nat,Φ ⊢ Φ[succ𝑥/𝑥]
Γ, 𝑥 : nat ⊢ Φ 𝜎nat

Γ, 𝛽 ÷𝐴 ⊢ Φ[⟨head𝑀 ||𝛽⟩/⟨𝑀 ||𝛼⟩]
Γ, 𝛼 ÷ strm𝐴,Φ ⊢ Φ[⟨tail𝑀 ||𝛼⟩/⟨𝑀 ||𝛼⟩]

Γ, 𝛼 ÷ strm𝐴 ⊢ Φ 𝜎strm

Figure 14. Strong (co)induction in 𝜆𝜇𝜇̃.

induction and coinduction safe? The rules for strong (co)-
induction (𝜎nat and 𝜎strm) are given for the abstract ma-
chine (fig. 13) and the 𝜆𝜇𝜇̃-calculus (fig. 14), which generalize
the weaker rules (𝜔nat and 𝜔strm) to any property, not just
strict or productive ones. As it turns out, unlike the weaker
forms, strong induction and coinduction are only coherent
under certain evaluation strategies.

Theorem 9. 1. The equational theory in fig. 11 extended
with 𝜎nat is coherent for call-by-value evaluation.

2. The equational theory in fig. 11 extended with 𝜎strm is
coherent for call-by-name evaluation.

To see where the extensions could be incoherent, notice
that the 𝜎nat rule proves this (non-𝑥-strict) property:

𝛼 ÷ nat ⊢ ∀𝑥 :nat.
⟨𝑥 || case{zero→ zero | succ → zero}with𝛼⟩ = ⟨zero ||𝛼⟩

Call-by-name allows for the value 𝜇 .⟨succ zero ||𝛼⟩ to be
substituted for 𝑥 in this equation, leading to the incoher-
ent equality 𝛼÷ nat ⊢ ⟨succ zero ||𝛼⟩=⟨zero ||𝛼⟩ contradicting
theorem 7. Dually, 𝜎strm proves (the non-𝛼-productive):

𝛼 ÷ nat ⊢ ∀𝛽÷ strm𝐴.

⟨cocase{head →𝛼 | tail →𝛼}with zero ||𝛽⟩ = ⟨zero ||𝛼⟩

and yet call-by-value allows the covalue 𝜇̃ .⟨succ zero ||𝛼⟩ to
be substituted for 𝛽 , leading to the same incoherent equality
contradicting theorem 7.

In contrast to𝜔nat, 𝜎nat is general enough to let us derive
the traditional notion of strong induction on the natural
numbers. First, define the ordering relation on numbers in
terms of the following equality:

𝑀 ≤ 𝑁 : nat := minus 𝑀 𝑁 = zero : nat

We then write ∀𝑥≤𝑀 :nat.Φ as shorthand for the property
∀𝑥 :nat. 𝑥 ≤ 𝑀 : nat⇒ Φ. Applying 𝜎nat to this gives:
Γ ⊢ ∀𝑦≤zero:nat.Φ Γ, 𝑥 : nat,∀𝑦≤𝑥 :nat.Φ ⊢ ∀𝑦≤ succ𝑥 :nat.Φ

Γ, 𝑥 : nat ⊢ ∀𝑦≤𝑥 :nat.Φ 𝜎nat

Since ∀𝑦≤zero:nat. 𝑦 = zero : nat is derivable (by definition
of ≤) as well as ∀𝑥 :nat. 𝑥 ≤ 𝑥 : nat (by induction with 𝜎nat),
we can specialize the above application to derive the follow-
ing simpler statement of strong induction on the naturals:

Γ ⊢ Φ[zero/𝑥] Γ, 𝑥 : nat,∀𝑦≤𝑥 :nat.Φ ⊢ Φ[succ𝑥/𝑥]
Γ, 𝑥 : nat ⊢ Φ

As with induction on the natural numbers, we can derive
the dual notion of strong coinduction on infinite streams.

PPDP ’20, September 8–10, 2020, Bologna, Italy P. Downen and Z.M. Ariola

First, define the ordering relation on stream projections as:

𝑄 ≤ 𝑅 ÷ strm𝐴 := depth 𝑄 ≤ depth 𝑅 : nat

where depth 𝑄 computes the depth of any stream projection
𝑄 , effectively converting tail𝑛 (head𝛼) to succ𝑛 zero:
depth𝑄 := 𝜇𝛼.⟨count ||coiter𝑄 as{head → head𝛼 | tail→𝛽. tail 𝛽}⟩

As before, we write the quantification ∀𝛼≤𝑄÷ strm𝐴.Φ as
shorthand for ∀𝛼÷ strm𝐴. 𝛼 ≤ 𝑄 ÷ strm𝐴 ⇒ Φ. Applying
𝜎strm to this property gives:

Γ, 𝛿 ÷𝐴 ⊢ ∀𝛽≤head𝛿÷strm𝐴.Φ

Γ, 𝛼÷strm𝐴,∀𝛽≤𝛼÷strm𝐴.Φ ⊢ ∀𝛽≤tail𝛼÷strm𝐴.Φ

Γ, 𝛼 ÷ strm𝐴 ⊢ ∀𝛽≤𝛼÷ strm𝐴.Φ

Analogous to strong induction on the naturals, we can use
this application to derive the following simpler statement of
strong coinduction on streams:

Γ, 𝛿÷𝐴 ⊢ Φ[head𝛿/𝛼]
Γ, 𝛼÷strm𝐴,∀𝛽≤𝛼÷strm𝐴.Φ[𝛽/𝛼] ⊢ Φ[tail𝛼/𝛼]

Γ, 𝛼 ÷ strm𝐴 ⊢ Φ

From this, We can derive the following special case of strong
coinduction, where we must show the first 𝑛 + 1 base cases
(for head 𝛽 , tail(head 𝛽), . . . tail𝑛 (head 𝛽)) directly, and then
take the 𝑛 + 1𝑡ℎ tail projection in the coinductive case:

Γ, 𝛽 ÷𝐴 ⊢ Φ[head 𝛽/𝛼] . . . Γ, 𝛽 ÷𝐴 ⊢ Φ[tail𝑛 (head 𝛽)/𝛼]
Γ, 𝛼 ÷ strm𝐴,Φ ⊢ Φ[tail𝑛+1 𝛼/𝛼]

Γ, 𝛼 ÷ strm𝐴 ⊢ Φ

For example, the corresponding principle in 𝜆𝜇𝜇̃ can prove
that ∀𝑠:strm𝐴. merge (evens 𝑠) (odds 𝑠) = 𝑠 : strm𝐴 by step-
ping by 2. It suffices to show (via IntroR, SubstR, 𝜎𝜇) that

𝛼 ÷ strm𝐴 ⊢ ∀𝑠:strm𝐴.⟨merge (evens 𝑠) (odds 𝑠) ||𝛼⟩ = ⟨𝑠 ||𝛼⟩
which follows from the strong coinduction principle above,
derived from 𝜎strm:
• For the first base case with ⟨head𝑀 ||𝛽⟩/⟨𝑀 ||𝛼⟩, we
have the following calculation from the definition of
merge and evens for a generic 𝑠 (IntroL):

⟨head(merge (evens 𝑠) (odds 𝑠)) ||𝛽⟩ = ⟨head(evens 𝑠) ||𝛽⟩ (merge)
= ⟨head 𝑠 ||𝛽⟩ (evens)

• For the second base casewhere ⟨head(tail𝑀) ||𝛽⟩/⟨𝑀 ||𝛼⟩,
we have the following calculation for a generic 𝑠 (IntroL):

⟨head(tail(merge (evens 𝑠) (odds 𝑠))) ||𝛽⟩
= ⟨head(merge (odds 𝑠) (tail(evens 𝑠))) ||𝛽⟩ (merge)
= ⟨head(odds 𝑠) ||𝛽⟩ (merge)
= ⟨head(tail 𝑠) ||𝛽⟩ (odds)

• For the coinductive step, we may use the hypothesis

∀𝑠: strm𝐴.⟨merge (evens 𝑠) (odds 𝑠) ||𝛼⟩ = ⟨𝑠 ||𝛼⟩
to show the same property after 2 tail projections on
a generic 𝑠 : strm𝐴,

⟨tail(tail(merge (evens 𝑠) (odds 𝑠))) ||𝛼⟩ = ⟨tail(tail 𝑠) ||𝛼⟩

which proceeds by the following calculation:

⟨tail(tail(merge (evens 𝑠) (odds 𝑠))) ||𝛼⟩
= ⟨tail(merge (odds 𝑠) (tail(evens 𝑠))) ||𝛼⟩ (merge)
= ⟨merge (tail(evens 𝑠)) (tail(odds 𝑠)) ||𝛼⟩ (merge)
= ⟨merge (evens(tail(tail 𝑠))) (odds(tail(tail 𝑠))) ||𝛼⟩ (evens, odds)
= ⟨tail(tail 𝑠) ||𝛼⟩ (𝐶𝐼𝐻 [tail(tail 𝑠)/𝑠])

The traditional principle of bisimulation on streams is also
subsumed by the strong coinduction rule 𝜎strm, written as
the following property Bisim𝐴

Φ , where the simulation relation
is represented by Φ referring to two streams named 𝑠 and 𝑠 ′:

Bisim𝐴
Φ := (∀𝑠, 𝑠 ′: strm𝐴.Φ⇒ head 𝑠 = head 𝑠 ′ : 𝐴)
⇒ (∀𝑠, 𝑠 ′: strm𝐴.Φ⇒ Φ[tail 𝑠/𝑠, tail 𝑠 ′/𝑠 ′])
⇒ (∀𝑠, 𝑠 ′: strm𝐴.Φ⇒ 𝑠 = 𝑠 ′ : strm𝐴)

Where we use the shorthand ∀𝑠, 𝑠 ′: strm𝐴.Φ to stand for mul-
tiple quantifications of the same type∀𝑠: strm𝐴.∀𝑠 ′: strm𝐴.Φ.
The two assumptions confirm that Φ is a valid bisimulation
relation: Φ only relates streams with equal heads, and is
closed under tail projection. Bisim𝐴

Φ is derivable from strong
coinduction in the 𝜆𝜇𝜇̃ equational theory.

7 Related Work
Our focus here primarily on theoretical foundations, rather
than applications, of corecursion and coinduction. In particu-
lar, this work serves as a foundation for coinduction based on
codata as found in practical languages like Agda, which sup-
ports copatterns [2] on coinductively-defined types. For an
introduction to related ideas on computational corecursion
based on more practical examples in programming, see [15].

The corecursor presented here is a computational interpre-
tation of the categorical model of corecursion in a coalgebra
[17]. A (weak) coalgebra for a functor 𝐹 is defined by a mor-
phism 𝛼 : 𝐴 → 𝐹 (𝐴) for some 𝐴. A corecursive coalgebra
extends this idea, by commutingwith other morphisms of the
form𝑋 → 𝐹 (𝐴+𝑋). Intuitively, the option𝐴+𝑋 in the result
corresponds to the multiple outputs in the corecursor pre-
sented here. Note that we interpret the corecursive 𝐴 + 𝑋 as
multiple continuations, rather than a sum type, which maps
more closely to lower-level implementations. This gives im-
proved efficiency of corecursion over coiteration with sum
types in call-by-value (recall section 4.2).

The coiterator, which we define as the restriction of the co-
recursor to never short-cut corecursion, corresponds exactly
to the Harper’s [23] strgen. In this sense, the corecursor is
a conservative extension of the purely functional coiterator.
Coiterationwith control operators is considered in [5], which
gives a call-by-name CPS translation for a stream coiterator
and primitive operation for scons. Here, the use of an ab-
stract machine serves a similar role as CPS—making explicit
information- and control-flow—but allows us to use the same
translation for both call-by-value and -name. An alternative
approach to (co)recursive combinators is sized types [1, 24],

A Computational Understanding of Classical (Co)Recursion PPDP ’20, September 8–10, 2020, Bologna, Italy

which give the programmer control over recursion while still
ensuring termination, and have been used for both purely
functional [3] and classical [13] coinductive types.

Our investigation on evaluation strategy showed the (dual)
impact of call-by-value versus call-by-name evaluation [7,
38] on the efficiency and strength of (co)induction. We show
how call-by-name evaluation is necessary for strong co-
induction in the presence of effects, dual to the fact that call-
by-value evaluation is necessary for strong induction. We
believe that this connection also holds for efficiency and op-
timization, as well. For example, previous work has showed
that for function types—which are a form of non-corecursive
codata type—optimizations of function arity are improved by
call-by-name evaluation [12, 14]. Though counterintuitive,
the improvements to arity are owed to the stronger equa-
tional theory (specifically, the 𝜂 law of the 𝜆-calculus) which
is possible by call-by-name evaluation. We speculate there
may be similar optimizations for corecursion on coinductive
types made possible by a strong call-by-name theory.

In contrast to having a monolithic evaluation strategy, an-
other approach is use a hybrid evaluation strategy as done by
call-by-push-value [29] or polarized languages [31, 39]. With
a hybrid approach, we could define one language which has
both efficient (co)recursors and strong (co)inductive princi-
ples. Polarity also allows for incorporating other evaluation
strategies, such as call-by-need which shares the work of
computations, while keeping the strong equational theory
[10, 30]. We leave to future work an investigation on the
polarized version of the (co)inductive calculus and abstract
machine presented here.
Our notions of strong (co)induction—which are founded

on dual forms of data flow and control flow—allow for lo-
cal reasoning about valid applications of the (co)inductive
hypothesis, which leads to a compositional development of
(co)inductive proofs. Similarly, Paco [25] aims to aid the de-
velopment of coinductive proofs through both compositional-
ity (local, not global, correctness criteria) and incrementality
(new knowledge may be accumulated as the proof is devel-
oped). We showed how the strong version our equational the-
ory encompasses well-known principles of strong induction
and bisimulation of corecursive processes. We conjecture
that Paco’s coinductive principles can also be encoded as an
application of strong coinduction—giving a computational
model for its proofs—where accumulated knowledge may be
represented as the accumulator of a corecursive process.

8 Conclusion
This paper defines a language for providing a computational
foundation of (co)recursive programming and (co)inductive
reasoning. The impact of evaluation strategy is also illus-
trated, where call-by-value and -name have (opposite) ad-
vantages for the efficiency of (co)recursion and strength
of (co)induction. These (co)recursion schemes are captured

by (co)data types whose duality is made apparent in their
implementation in an abstract machine. The (co)inductive
principles are derived from the definition of types in terms
of construction or destruction, using control flow instead of
bisimulation to guide the coinductive hypothesis. In the end,
the logical dualities in computation—between data and co-
data; information flow and control flow—provide a unified
framework for using and reasoning with (co)inductive types.

Acknowledgments
This work is supported by the National Science Foundation
under Grant No. 1719158.

References
[1] Andreas Abel. 2006. A Polymorphic Lambda Calculus with Sized Higher-

Order Types. Ph.D. Thesis. Ludwig-Maximilians-Universität München.
[2] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer.

2013. Copatterns: Programming Infinite Structures by Observations.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Rome, Italy) (POPL ’13). ACM,
New York, NY, USA, 27–38. https://doi.org/10.1145/2429069.2429075

[3] Andreas M. Abel and Brigitte Pientka. 2013. Wellfounded Recursion
with Copatterns: A Unified Approach to Termination and Productivity.
In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13).
ACM, New York, NY, USA, 185–196. https://doi.org/10.1145/2500365.
2500591

[4] Zena M. Ariola, Aaron Bohannon, and Amr Sabry. 2009. Sequent
Calculi and Abstract Machines. ACM Transactions on Programming
Languages and Systems 31, 4, Article 13 (May 2009), 48 pages. https:
//doi.org/10.1145/1516507.1516508

[5] Gilles Barthe and Tarmo Uustalu. 2002. CPS Translating Inductive and
Coinductive Types. In Proceedings of the 2002 ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipulation
(Portland, Oregon) (PEPM ’02). Association for Computing Machinery,
New York, NY, USA, 131–142. https://doi.org/10.1145/503032.503043

[6] Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. 2012. The
Stack Calculus. In Proceedings Seventh Workshop on Logical and Se-
mantic Frameworks, with Applications (Rio de Janeiro, Brazil) (LSFA
2012). 93–108. https://doi.org/10.4204/EPTCS.113.10

[7] Pierre-Louis Curien andHugoHerbelin. 2000. The Duality of Computa-
tion. In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’00). ACM, New York, NY, USA,
233–243. https://doi.org/10.1145/351240.351262

[8] Paul Downen and Zena M. Ariola. 2014. Compositional Semantics
for Composable Continuations: From Abortive to Delimited Control.
In Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming (Gothenburg, Sweden) (ICFP ’14). ACM, New
York, NY, USA, 109–122. https://doi.org/10.1145/2628136.2628147

[9] Paul Downen and Zena M. Ariola. 2014. The Duality of Construction.
In Programming Languages and Systems: 23rd European Symposium on
Programming, ESOP 2014, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2014. Lecture Notes
in Computer Science, Vol. 8410. Springer Berlin Heidelberg, 249–269.
https://doi.org/10.1007/978-3-642-54833-8_14

[10] Paul Downen and Zena M. Ariola. 2018. Beyond Polarity: Towards a
Multi-Discipline Intermediate Language with Sharing. In 27th EACSL
Annual Conference on Computer Science Logic, CSL 2018, September 4-7,
2018, Birmingham, UK (LIPIcs, Vol. 119). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 21:1–21:23. https://doi.org/10.4230/LIPIcs.
CSL.2018.21

https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1145/2500365.2500591
https://doi.org/10.1145/2500365.2500591
https://doi.org/10.1145/1516507.1516508
https://doi.org/10.1145/1516507.1516508
https://doi.org/10.1145/503032.503043
https://doi.org/10.4204/EPTCS.113.10
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/2628136.2628147
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.4230/LIPIcs.CSL.2018.21
https://doi.org/10.4230/LIPIcs.CSL.2018.21

PPDP ’20, September 8–10, 2020, Bologna, Italy P. Downen and Z.M. Ariola

[11] Paul Downen and Zena M. Ariola. 2018. A Tutorial on Computational
Classical Logic and the Sequent Calculus. Journal of Functional Pro-
gramming 28 (2018), e3. https://doi.org/10.1017/S0956796818000023

[12] Paul Downen, Zena M. Ariola, Simon Peyton Jones, and Richard A.
Eisenberg. 2020. Kinds Are Calling Conventions. Proceedings of the
ACM on Programming Languages 4, ICFP, Article 104 (Aug. 2020),
29 pages. https://doi.org/10.1145/3408986

[13] Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. 2015. Struc-
tures for Structural Recursion. In Proceedings of the 20th ACM SIG-
PLAN International Conference on Functional Programming (Vancou-
ver, BC, Canada) (ICFP ’15). ACM, New York, NY, USA, 127–139.
https://doi.org/10.1145/2784731.2784762

[14] Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton
Jones. 2019. Making a faster Curry with extensional types. In Proceed-
ings of the 12th ACM SIGPLAN International Symposium on Haskell,
Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019. ACM, 58–70.
https://doi.org/10.1145/3331545.3342594

[15] Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton
Jones. 2019. Codata in Action. In Programming Languages and Systems
- 28th European Symposium on Programming, ESOP 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019 (Prague, Czech Republic) (ESOP ’19). Springer International
Publishing, Cham, 119–146. https://doi.org/10.1007/978-3-030-17184-
1_5

[16] Gerhard Gentzen. 1935. Untersuchungen über das logische Schließen.
I. Mathematische Zeitschrift 39, 1 (1935), 176–210. https://doi.org/10.
1007/BF01201353

[17] Herman Geuvers. 1992. Inductive and Coinductive types with Iteration
and Recursion. In Proceedings of the 1992 Workshop on Types for Proofs
and Programs, Bastad. 193–217.

[18] Jeremy Gibbons and Graham Hutton. 2005. Proof Methods for Core-
cursive Programs. Fundamenta Informaticae 66 (04 2005), 353–366.

[19] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50,
1 (1987), 1–101. https://doi.org/10.1016/0304-3975(87)90045-4

[20] Kurt Gödel. 1980. On a hitherto unexploited extension of the finitary
standpoint. Journal of Philosophical Logic 9, 2 (1980), 133–142. https:
//doi.org/10.1007/BF00247744

[21] Mike Gordon. 2017. Corecursion and coinduction: what they are and
how they relate to recursion and induction. https://www.cl.cam.ac.
uk/archive/mjcg/Blog/WhatToDo/Coinduction.pdf

[22] Tatsuya Hagino. 1987. A Typed Lambda Calculus With Categorical
Type Constructors. In Category Theory and Computer Science (Edin-
burgh, U.K.). Springer Berlin Heidelberg, Berlin, Heidelberg, 140–157.
https://doi.org/10.1007/3-540-18508-9_24

[23] Robert Harper. 2016. Practical Foundations for Programming Languages
(2nd ed.). Cambridge University Press, USA.

[24] John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Cor-
rectness of Reactive Systems Using Sized Types. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). As-
sociation for Computing Machinery, New York, NY, USA, 410–423.
https://doi.org/10.1145/237721.240882

[25] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013.
The Power of Parameterization in Coinductive Proof. In Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Rome, Italy) (POPL ’13). Association for
Computing Machinery, New York, NY, USA, 193–206. https://doi.org/
10.1145/2429069.2429093

[26] Philip Johnson-Freyd, Paul Downen, and Zena M. Ariola. 2016. First
Class Call Stacks: Exploring Head Reduction. In Proceedings of the
Workshop on Continuations, WoC 2016, London, UK, April 12th 2015
(EPTCS, Vol. 212). 18–35. https://doi.org/10.4204/EPTCS.212

[27] Philip Johnson-Freyd, Paul Downen, and Zena M. Ariola. 2017. Call-
by-name Extensionality and Confluence. Journal of Functional Pro-
gramming 27 (2017), e12. https://doi.org/10.1017/S095679681700003X

[28] Jean-Louis Krivine. 2007. A Call-By-Name Lambda-Calculus Machine.
Higher-Order and Symbolic Computation 20, 3 (2007), 199–207. https:
//doi.org/10.1007/s10990-007-9018-9

[29] Paul Blain Levy. 2001. Call-By-Push-Value. Ph.D. Dissertation. Queen
Mary and Westfield College, University of London.

[30] Dylan McDermott and Alan Mycroft. 2019. Extended Call-by-Push-
Value: Reasoning About Effectful Programs and Evaluation Order. In
Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 11423). Springer, 235–262. https://doi.org/10.1007/978-3-030-
17184-1_9

[31] Guillaume Munch-Maccagnoni. 2013. Syntax and Models of a non-
Associative Composition of Programs and Proofs. Ph.D. Dissertation.
Université Paris Diderot.

[32] Koji Nakazawa and Tomoharu Nagai. 2014. Reduction System for
Extensional Lambda-mu Calculus.. In Rewriting and Typed Lambda
Calculi (LNCS). 349–363.

[33] Michel Parigot. 1992. 𝜆𝜇-Calculus: An Algorithmic Interpretation of
Classical Natural Deduction. In Logic Programming and Automated
Reasoning: International Conference (St. Petersburg, Russia) (LPAR ’92).
Springer Berlin Heidelberg, Berlin, Heidelberg, 190–201. https://doi.
org/10.1007/BFb0013061

[34] Pierre-Marie Pédrot and Nicolas Tabareau. 2017. An Effectful Way
to Eliminate Addiction to Dependence. In Logic in Computer Science
(LICS), 2017 32nd Annual ACM/IEEE Symposium on. Reykjavik, Iceland,
12. https://doi.org/10.1109/LICS.2017.8005113

[35] Crole Roy. 2003. Coinduction and bisimilarity. In Oregon Programming
Languages Summer School (OPLSS).

[36] Jan Rutten. 2019. The Method of Coalgebra: Exercises in coinduction.
(Feb. 2019), 1–261.

[37] Davide Sangiorgi. 2011. Introduction to Bisimulation and Coinduction.
Cambridge University Press, New York, NY, USA.

[38] PhilipWadler. 2003. Call-By-Value is Dual to Call-By-Name. In Proceed-
ings of the Eighth ACM SIGPLAN International Conference on Functional
Programming (Uppsala, Sweden). ACM, New York, NY, USA, 189–201.
https://doi.org/10.1145/944705.944723

[39] Noam Zeilberger. 2009. The Logical Basis of Evaluation Order and
Pattern-Matching. Ph.D. Dissertation. Carnegie Mellon University.

https://doi.org/10.1017/S0956796818000023
https://doi.org/10.1145/3408986
https://doi.org/10.1145/2784731.2784762
https://doi.org/10.1145/3331545.3342594
https://doi.org/10.1007/978-3-030-17184-1_5
https://doi.org/10.1007/978-3-030-17184-1_5
https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF01201353
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/BF00247744
https://doi.org/10.1007/BF00247744
https://www.cl.cam.ac.uk/archive/mjcg/Blog/WhatToDo/Coinduction.pdf
https://www.cl.cam.ac.uk/archive/mjcg/Blog/WhatToDo/Coinduction.pdf
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1145/237721.240882
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.4204/EPTCS.212
https://doi.org/10.1017/S095679681700003X
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1007/978-3-030-17184-1_9
https://doi.org/10.1007/978-3-030-17184-1_9
https://doi.org/10.1007/BFb0013061
https://doi.org/10.1007/BFb0013061
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1145/944705.944723

	Abstract
	1 Introduction
	2 Recursion in the Lambda Calculus
	2.1 Recursion vs iteration

	3 Recursion in an Abstract Machine
	4 Corecursion in an Abstract Machine
	4.1 Properly dual (co)recursive types
	4.2 Corecursion vs coiteration

	5 Functional, Effectful (Co)recursion
	5.1 A corecursive coeliminator

	6 Syntactic (Co)Inductive Reasoning
	6.1 Equational theory of the abstract machine
	6.2 Equational theory of the -calculus
	6.3 Strong (co)induction

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

