
The duality of construction

Paul Downen1 & Zena M. Ariola1

University of Oregon, {pdownen,ariola}@cs.uoregon.edu

Abstract. We explore the duality of construction and deconstruction in
the presence of different evaluation strategies. We characterize an evalua-
tion strategy by the notion of substitutability, given by defining what is a
value and a co-value, and we present an equational theory that takes the
strategy as a parameter. The theory may be extended with new logical
connectives, in the form of user-defined data and co-data types, which
are duals of one another. Finally, we explore a calculus with composite
evaluation strategies that allow for more flexibility over evaluation order
by mingling multiple primitive strategies within a single program.

1 Introduction

Over two decades ago, Filinski [5] discovered the dual relationship between the
call-by-value and call-by-name evaluation strategies by relating programs that
produce information with continuations that consume information. Since then,
this duality has been studied from the perspective of category theory [5,10]
and proof theory [3,11,12]. In particular, the sequent calculus has provided a
fruitful foundation for this study, due to the inherent duality in the form of
sequent judgments: assumptions act as inputs and conclusions act as outputs.
This notion has been formalized [3,11] as foundational calculi which execute at
the level of an abstract machine. For example, the inference rule for implication
on the left of a sequent is viewed as the typing rule for a call-stack in a Krivine
machine.

More recently [13,8,4], polarization in logic has been used as a type-based
account of evaluation order, which divides types into two classifications, positive
and negative, based on properties of their inference rules. On the one hand,
positive types are defined by their rules of introduction, i.e., construction, and
are given a call-by-value interpretation. The use of a positively typed value is
given by cases over the possible constructions, in the style of data types in
functional languages like ML. On the other hand, negative types are defined
by their rules of elimination, i.e., observation, and are given a call-by-name
interpretation. In order to produce a negatively typed value, we must consider
all possible observations, giving us a message-passing programming style. If there
is ever an apparent ambiguity on the evaluation order of a program, the type is
consulted and the order is determined by considering the type’s polarity.

The primary focus on either introduction or elimination divides programs into
two parts: concrete programs that are constructed and abstract programs de-
fined by cases. This division describes the behavior of programs as an interaction

between construction and deconstruction, with two dual ways of orienting the
roles between a consumer and a producer: data with concrete producers and ab-
stract consumers, and co-data with abstract producers and concrete consumers.
In high-level languages, both data and co-data are useful tools for organizing
information in programs, and may be interpreted by different evaluation strate-
gies: we may want strictly evaluated terms defined by dynamic dispatch on their
observations (as in an object-oriented language), and likewise we may want lazily
evaluated terms that are defined by construction (as in Haskell). Polarized logic
can account for this behavior by translating a program into one with polarities
to provide the desired evaluation order, much like how a continuation-passing
style transformation can define the evaluation order for a language.

The goal of this paper is to provide a general account of the data and
co-data definitional paradigms along with an equational theory that directly
supports evaluation according to different strategies, expressing both the dual-
ity between strategies and the two paradigms. A better understanding of the
data and (co-)data paradigms may eventually lead to a more suitable foun-
dation for studying the design of languages that contain both functional and
object-oriented features. Since the sequent calculus exposes details that appear
in abstract machines while still maintaining high-level reasoning principles, it
may serve as a bridge between programming languages and their low-level rep-
resentations, for example as an intermediate language in a compiler.

We develop a sequent calculus that is parameterized by a chosen evaluation
strategy, similar to the parametric λ-calculus [9], which guides the notion of
substitution in the calculus. The goal of choosing a strategy is to eliminate the
fundamental inconsistency of the calculus by eliminating the single point of con-
flict between producers and consumers. The equational theory is untyped since
any conflicts that arise are resolved by the strategy, meaning that we do not need
to consult the type of a program during evaluation. We begin by examining the
core calculus (Section 3) which expresses the impact of an evaluation strategy on
the behavior of a program as a restriction of what may be substituted for a vari-
able. We take notions of call-by-name and call-by-value as our primary examples
for characterizing strategies, but also show a characterization of call-by-need and
its dual, demonstrating that there are more than two possible strategies.

Atop the core calculus of substitution, we consider functions (Section 4) and
describe their behavior in terms of β and η rules. Unlike in the λ-calculus and
previous formulations of the sequent calculus [3,11], these same rules apply in
every evaluation strategy, and we show that they provide a complete definition
of functions. Next, we extend the language with basic data and co-data types
(Section 5), illustrating two forms of pairs (⊗,&) and two forms of sums (⊕,`)
that correspond to similar concepts in Girard’s linear logic [6] and polarized
logic [13,4]. As with functions, we give a similar βη characterization of the basic
(co-)data types that does not reference the chosen evaluation strategy, and show
that this characterization derives the various “lifting” (ς) rules of Wadler’s se-
quent calculus [11,12]. Finally, we use the common βη theme in order to present
a general notion of user-defined data and co-data types (Section 6) which en-

compasses all of the previous types. On the one hand, since we are working in an
untyped setting, (co-)data type declarations are used for introducing new ways
to form structures and abstractions in a program, independently of a static type
system. On the other hand, (co-)data type declarations are inspired by logic
and may be seen as describing a static type system for the parametric sequent
calculus.

We also consider how to compose several strategies into a single compos-
ite strategy (Section 7). This allows a single program to be written with call-
by-name and call-by-value parts, or any other combination of two (or more)
strategies. To maintain consistency of the calculus, we separate the (co-)data
types into different kinds that denote different strategies, so that well-kinded
programs are consistent. When considering only one strategy, this degenerates
into the previous untyped equational theory, and for two strategies the approach
is similar to Zeilberger’s [14] “bi-typed” system, except generalized to also work
with any number of additional strategies like call-by-need (or its dual).

Our contributions are: (1) We develop a parametric equational theory for the
sequent calculus that may be instantiated by various strategies. We express the
essence of a strategy by what may be substituted for a (co-)variable. In other
words, a strategy is identified by a choice of values and co-values. (2) We enrich
the sequent calculus with user-defined data and co-data types, whose behavior
are defined exclusively in terms of β and η principles that do not refer to the cho-
sen strategy. These two principles provide the basis for all user-defined (co-)data
types, and may be used to derive other properties like Wadler’s ς rules [11].
(3) We give call-by-value and call-by-name strategies for the equational theory
that are sound and complete with respect to known CPS transformations [3] and
their extension with user-defined (co-)data types. (4) We generalize the known
duality of call-by-value and call-by-name evaluation in the sequent calculus [3,11]
to be parametric over evaluation strategies and types, giving a mechanical pro-
cedure for generating the dual language for any choice of connectives and eval-
uation strategy, as expressed in the parametric calculus. (5) We exhibit that
the parametric theory supports more intricate notions of evaluation strategy by
instantiating it with a call-by-need strategy and generating its dual. (6) We il-
lustrate how to compose two or more primitive strategies, such as call-by-value,
call-by-name, and call-by-need, into a single composite strategy, so that a pro-
gram may selectively choose and switch between several evaluation strategies at
run-time.

2 Introduction to the sequent calculus

When implementing an evaluator for the λ-calculus, it becomes necessary to find
the next reduction, or step, to perform in a term. Searching for the next reduction
is not always trivial, since it may be buried deep inside the syntax of the term. For
instance, consider the syntax tree for the term (((λx.M) N1) N2) N3 as shown
in Figure 1(a), where the name α is a placeholder for the rest of the surrounding
context. The next step is to call the function (λx.M) with the argument N1, but

α

·

N3·

N2·

N1λx

M

||

·

·

·

αN3

N2

N1

λx

M

(a) λ-calculus (b) λµµ̃-calculus

Fig. 1. Re-association of the abstract-syntax tree for function calls.

the term for this function call is at the bottom of the tree, and to reach it we need
to search past the function calls with N3 and N2 as arguments. As an alternate
representation of the same program, we can re-associate the syntax tree so that
the next step to perform is located at the top of the tree, as shown in Figure 1(b).
Imagine that we take hold of the edge connecting the function to its call and drag
it upward so that the rest of the tree hangs off both sides of the edge, turning
the context inside out. Syntactically, this amounts to converting the evaluation
context into a term in its own right, i.e., a co-term. Written out sequentially
using Curien and Herbelin’s λµµ̃-calculus [3], the re-associated program is the
command 〈λx.M ||N1 ·N2 ·N3 · α〉, where · builds a call-stack and associates to
the right. From the perspective of the Curry-Howard correspondence, this change
in orientation in the syntax of programming languages corresponds with a similar
change in the structure of proofs. Just as the λ-calculus corresponds with natural
deduction, the λµµ̃-calculus corresponds with the sequent calculus.

Fundamentally, the λµµ̃-calculus describes computation as the interaction
between a term and a co-term. For example, if we evaluate the program in Fig-
ure 1(b) according to a call-by-name strategy, where a function call is performed
without evaluating the argument, we get the reduction

〈λx.M ||N1 ·N2 ·N3 · α〉 →→ 〈M {N1/x}||N2 ·N3 · α〉

where we take the first argument, N1, in the co-term and substitute it for x in the
body of the function. Afterward, we evaluate the interaction between M {N1/x}
and the remaining co-term. Alternatively, we may want to consider a call-by-
value strategy, where we evaluate N1 before calling the function. As a way to
keep reduction at the top of the syntax tree, a µ̃-abstraction can give a name to
N1. The co-term µ̃x.〈M ||N2 ·N3 · α〉 should be read as letx = � in (M N2 N3)
in the context α. Therefore, we can make the call-by-value reduction

〈λx.M ||N1 ·N2 ·N3 · α〉 →→ 〈N1||µ̃x.〈M ||N2 ·N3 · α〉〉

with the understanding that we must first fully evaluate N1 to a value be-
fore substituting it for x in 〈M ||N2 ·N3 · α〉. In addition to µ̃-abstraction, we
have the dual notion of µ-abstraction that allows a term to name its co-term.
Therefore, we can close off the command by introducing α, giving us the term
µα.〈(λx.M)||N1 ·N2 ·N3 · α〉.

The λµµ̃-calculus takes implication (functions) as its only logical connective
(type constructor). However, we want to explore a variety of other connectives
in the sequent calculus. Furthermore, once we have a method for declaring new
type constructors, functions just become another instance of a user-defined type.
For this reason, we temporarily forgo functions and more closely examine the
core language of substitution.

3 The parametric µµ̃ core

We now consider the µ and µ̃-abstractions which lie at the heart of the λµµ̃-
calculus. More specifically, programs in the µµ̃-calculus are defined as follows:

c ∈ Command ::= 〈v||e〉 v ∈ Term ::= x || µα.c e ∈ CoTerm ::= α || µ̃x.c

The µ and µ̃-abstractions, µα.c and µ̃x.c respectively, embody the primitive
variable binding structure of the language, giving a name to a (co-)term in an
underlying command. It follows that during evaluation, these abstractions imple-
ment a notion of substitution. The µ axiom gives control to the term (producer)
by substituting the co-term for a co-variable, whereas the µ̃ gives control to the
co-term (consumer) by performing the opposite substitution:

(µ) 〈µα.c||e〉 = c {e/α} (µ̃) 〈v||µ̃x.c〉 = c {v/x}

As is, this theory is not consistent, as shown by the fact that the µ and µ̃ axioms
fight for control in the command 〈µα.c||µ̃x.c′〉1. To restore consistency, we can
give priority to one axiom over the other [3]:

Call-by-value consists in giving priority to the (µ) axiom, while call-by-
name gives priority to the (µ̃) axiom.

In lieu of considering two (or more) different theories that place restrictions
where necessary, we instead give a single parametric equational theory that does
not assume a particular evaluation strategy a priori. The theory is parameterized
by a choice of strategy, S, which is defined as a set of values and co-values that
are subsets of terms and co-terms, respectively. The axioms for the parametric
core µµ̃S -calculus are given in Figure 2, where the meta-variables V and E range
over the set of values and co-values given by S, respectively. In addition to the
substitution axioms, µ̃V and µE , we also have extensionality axioms, ηµ and ηµ̃,
that eliminate trivial µ- and µ̃-abstractions. Note that all equations follow the
usual restrictions to avoid capture of static variables. For instance, α is not a
free variable of v in the ηµ axiom of Figure 2.

Since the µE and µ̃V axioms are restricted by the strategy, carefully chosen
combinations of values and co-values may avoid the fundamental inconsistency
of the calculus. The simplest consistent choice of (co-)values that we can make
is to always exclude either µ or µ̃-abstractions, as shown in Figure 3. We can

1 If α 6∈ FV (c) and x 6∈ FV (c′) then 〈µα.c||µ̃x.c′〉 = c, c′, equating arbitrary c and c′.

(µE) 〈µα.c||E〉 = c {E/α}
(µ̃V) 〈V ||µ̃x.c〉 = c {V/x}

(ηµ) µα.〈v||α〉 = v

(ηµ̃) µ̃x.〈x||e〉 = e

Fig. 2. The parametric equational theory µµ̃S .

V ∈ V alueN ::= v E ∈ CoV alueN ::= α V ∈ V alueV ::= x E ∈ CoV alueV ::= e

Fig. 3. Call-by-name (N) and call-by-value (V) strategies of µµ̃S

then form a core call-by-name evaluation strategy, N , by letting every term be
a value, and restricting co-values to just co-variables. Dually, we have a core
call-by-value evaluation strategy, V, by letting every co-term be a co-value, and
restricting values to just variables. To disambiguate the different instances of
the parametric equational theory µµ̃S , we write µµ̃N ` c = c′ and µµ̃V ` c = c′

to mean that c and c′ are equated by the N and V instances of the parametric
theory, respectively. Notice that in both the N and V strategies, (co-)variables
are considered co-values, which is a condition we always assume to hold when
speaking of strategies in general. Moreover, the µµ̃S equational theory is closed
under substitution of (co-)values for (co-)variables.

Finally, we can also give a continuation-passing style (CPS) transformation
that maps sequent calculus programs to the λ-calculus. The CPS transformation
can be used as a reference point for reasoning about the correctness of the equa-
tional theory through the usual β and η axioms in the resulting λ-calculus term.
In Figure 4, we recount the call-by-name and call-by-value CPS transformations
given in [3] for the core calculus, denoted J KN and J KV . The µµ̃N and µµ̃V
equational theories are sound and complete with respect to βη equality of the
λ-calculus terms resulting from the J KN and J KV transformations, respectively.

4 Functions

Having first laid out the core µµ̃S -calculus, we consider the behavior of functions
in more detail. Using the same notation as the λµµ̃-calculus [3], we extend the
core µµ̃S -calculus with the following syntax, giving us the µµ̃→S -calculus:

v ∈ Term ::= . . . || λx.v e ∈ CoTerm ::= . . . || v · e

Functions are expressed as λ-abstraction terms (λx.v), the same as in the λ-
calculus. A function call, on the other hand, is represented by the co-term v · e,
where v stands for the function’s argument and e for the calling context, which
we first saw in Section 2. Additionally, we may extend our core call-by-name
and call-by-value strategies from Figure 3 to account for functions, as shown in
Figure 5. In the call-by-value strategy V, we admit λ-abstractions as values and
continue to let every co-term be a co-value. In the call-by-name strategy N , we
continue to let every term be a value, and admit the co-term v ·E as a co-value,
representing a λ-calculus context of the form E[� v].

J〈v||e〉KN , JeKN JvKN

JαKN , λx.x α JxKN , x

Jµ̃x.cKN , λx.JcKN Jµα.cKN , λα.JcKN

J〈v||e〉KV , JvKV JeKV

JxKV , λα.α x JαKV , α

Jµα.cKV , λα.JcKV Jµ̃x.cKV , λx.JcKV

Fig. 4. Call-by-name (N) and call-by-value (V) CPS transformations of µµ̃S .

V ∈ V alueN ::= v

E ∈ CoV alueN ::= α || v · E
V ∈ V alueV ::= x || λx.v

E ∈ CoV alueV ::= e

Fig. 5. Call-by-name (N) and call-by-value (V) strategies of µµ̃→S .

Now, we need to determine which axioms to add to our equational theory
in order to give a complete account for the run-time behavior of functions. It is
obvious we need an axiom for β reduction, as given in [3] for λµµ̃, since that is
the primary computational rule for functions. In addition, we also consider an
axiom for η equality, giving functions a notion of extensionality similar to the
λ-calculus. We therefore extend the core µµ̃S equational theory from Figure 2
with the two rules for functions in Figure 6 to obtain the µµ̃→S -calculus. Notice
that unlike in [3,11], these rules define the behavior of functions independently
of the strategy since the β→ and η→ axioms do not reference V or E — the
evaluation strategy is implemented by the core µµ̃S -calculus alone.

We should ask ourselves if these rules make sense computationally, so that
a consistent strategy for the core calculus is still consistent when extended with
functions. The β→ axiom is applicable to any command between a λ-abstraction
and a call, and dissolves the function call into a µ̃ binding, thereby relying on
the consistency of the strategy in the core µµ̃S -calculus. For example, with the
call-by-value strategy V, the µ̃-abstraction bears the responsibility of ensuring
that the argument v′ to a function call is a value before substituting it into the
body of the function — if v′ is the non-value µα.c then it gets to go first by
means of the µE rule. On the other hand, the η→ axiom is restricted to apply
only to variables. Intuitively, the η→ axiom states that an unknown function is
indistinguishable from a λ-abstraction. Recall that the core µµ̃S theory is closed
under substitution of values for variables, so the usual η→ axiom that applies
to values is derivable within the equational theory. This restriction is crucial for
preserving consistency of certain strategies, like the V strategy, and comes out
for free from the meaning of µ̃-abstractions in the core calculus.

We should also ask ourselves if these rules are complete enough to describe
the other behavioral properties of functions. For instance, previous reduction
systems for the sequent calculus [11,8] include a family of ς rules that lift sub-
computations to the top of a command. For implication, this takes the form of
axioms that lift out the sub-expressions of a function call:

(ς→x) v · e = µ̃f.〈v||µ̃x.〈f ||x · e〉〉 (ς→α) V · e = µ̃f.〈µα.〈f ||V · α〉||e〉

The ς rules are necessary for making progress with some programs. For example,
call-by-value evaluation of the command 〈z||µα.c · e〉 cannot proceed by β reduc-

(β→) 〈λx.v||v′ · e〉 = 〈v′||µ̃x.〈v||e〉〉 (η→) λx.µα.〈z||x · α〉 = z

Fig. 6. The β and η axioms of the µµ̃→S equational theory.

Jλx.vKN , λ(x, β).JvKNβ

Jv · eKN , λx.JeKNλβ.x (JvKN , β)

Jλx.vKV , λα.α λ(x, β).JvKVβ

Jv · eKV , λx.JvKVλy.x (y, JeKV)

Fig. 7. Call-by-name (N) and call-by-value (V) CPS transformations of func-
tions.

tion, and since the non-value argument µα.c is buried inside of a function call,
it needs to be lifted out for it to take control so that evaluation can continue.
A course-grained version of the lifting axiom, which lifts out both parts of a
function call

(ς→) v · e = µ̃f.〈v||µ̃x.〈µ̃α.〈f ||x · α〉||e〉〉

is easily derived from the ηµ̃, η→, and β→ axioms as follows:

v · e =ηµ̃ µ̃f.〈f ||v · e〉 =η→ µ̃f.〈λx.µα.〈f ||x · α〉||v · e〉 =β→ µ̃f.〈v||µ̃x.〈µα.〈f ||x · α〉||e〉〉

Furthermore, the ς→ axiom can be broken down into the more atomic rules
within the existing equational theory. The derivation of ς→α from ς→ is a conse-
quence of the µ̃V axiom, and we can derive the ς→x axiom as follows:

v · e =ς→ µ̃f.〈v||µ̃x.〈µα.〈f ||x · α〉||e〉〉
=µ̃V µ̃f.〈v||µ̃x.〈f ||µ̃f ′.〈x||µ̃x′.〈µα.〈f ′||x′ · α〉||e〉〉〉〉 =ς→ µ̃f.〈v||µ̃x.〈f ||x · e〉〉

Therefore, the combination of β→ and η→ axioms is powerful enough in the
parametric equational theory µµ̃→S to express other known behavioral properties
of functions that are needed for certain strategies.

We can achieve a more concrete sense of completeness for the specific cases
of call-by-name and call-by-value functions by extending our core CPS transfor-
mations for the N and V strategies, as in λµµ̃ [3] and shown in Figure 7, with
clauses that handle function abstractions and calls. The µµ̃→N and µµ̃→V equa-
tional theories are sound and complete with respect to the J KN and J KV CPS
transformations, respectively. This was previously known to hold for two sepa-
rate and disjoint subsets of λµµ̃ [3], but we now show that the correspondence
holds for the full µµ̃→N - and µµ̃→V -calculi using the equational theories given by
the strategies presented here.

Theorem 1. µµ̃→S ` c = c′ if and only if βη ` JcKS = Jc′KS , for S = V or N .

Therefore, it turns out that the combination of the β→ and η→ axioms alone re-
ally do give a complete account of functions in the sequent calculus. Furthermore,
both of these axioms do not reference the strategy: all of the details regarding
order of evaluation has been taken care of by the core µµ̃S -calculus.

Remark 1. Now that we have a logical connective to work with, we can compare
our use of strategies for determining evaluation order with the use of types in
polarized logic. Take the usual ambiguous command, 〈µα.c||µ̃x.c′〉, in which both
sides appear to be fighting for control, and let’s assume that the term and co-term
belong to the type A→ B. One way to resolve the conflict is to assume that the
η→ rule, corresponding to the reversibility of implication introduction in a proof
or the universal property of exponentials in a category, is as strong as possible.
Under this assumption, we can use the η→ rule to expand any term of type A→
B into a λ-abstraction. Therefore, the ambiguous command is actually equivalent
to the unambiguous command 〈λy.v||µ̃x.c′〉, where v = µβ.〈µα.c||y · β〉, and the
conflict has been resolved in favor of the consumer. This goes to show that
under the polarized view of types, in which the η rules are taken to be as strong
as possible, the type of the active (co-)terms in a command can be used to
determine evaluation order. Since the η rules for negative types like A → B
apply to terms, then every term must be equivalent to a value, leading to a call-
by-name interpretation. Dually, the η rules for positive types apply to co-terms,
so every co-term must be a co-value, giving us a call-by-value interpretation.
In contrast, the strategy based interpretation allows the user of the equational
theory to choose what is considered a (co-)value, and the logical η rules are
weakened so that they are consistent with the choice of strategy.

5 Basic data and co-data structures

So far, our approach has been to characterize the behavior of functions in terms
of β and η axioms alone, giving us a complete axiomatization for functions in
the sequent calculus. All other details relevant to computation, such as when
to lift out sub-computations in a function call, are derived from the primitive β
and η principles. Furthermore, the β and η rules did not directly reference the
strategy, but instead the meaning of the strategy is entirely defined by the core
µµ̃S calculus. To demonstrate the general applicability of this approach, and to
build toward a more complete language, we should also account for pairs and
disjoint unions, giving us a notion of products and sums in the sequent calculus.
As a test to see if our formulation of the β and η axioms are sufficient, we will
derive similar lifting rules, ς, as those described in Section 4 for functions.

We begin by considering sums (⊕) in the µµ̃S -calculus. As per the usual ap-
proach in functional programming languages (based on natural deduction style),
terms are injected into the sum as ι1(v) or ι2(v), and later analyzed by cases
in the form case v of ι1(x) ⇒ v1|ι2(y) ⇒ v2. In the sequent setting, we can
keep the same terms, and reify the context for case analysis into the co-term
µ̃[ι1(x).c1|ι2(y).c2]. Our goal now is to characterize the dynamic behavior of
sums in terms of β and η axioms. Performing β reduction is implemented by a
straightforward case analysis, matching the tag of the term with the appropri-
ate branch of the co-term. For the η rule, we want to recognize a trivial case
analysis that rebuilds the sum exactly as it was. Therefore, to extend the core

µµ̃S -calculus with sums, we include the following two axioms:

(β⊕) 〈ιi(v)||µ̃[ι1(x).c1|ι2(x).c2]〉 = 〈v||µ̃x.ci〉
(η⊕) µ̃[ι1(x).〈ι1(x)||α〉|ι2(y).〈ι2(y)||α〉] = α

Notice in particular that under call-by-value evaluation, the β axiom is applica-
ble even when ιi(v) is not a value, which is not directly allowed in Wadler’s [11]
call-by-value sequent calculus but is sound with respect to the CPS transfor-
mation. As with the β rule for functions, we are relying on the fact that a
µ̃-abstraction establishes the correct evaluation order, so that the underlying
term will only be substituted if it is a value. Additionally, substitution of a
co-value for α means that the η axiom for sums is also applicable to co-values.
Because of the ability to substitute a co-value for a co-variable, we end up with a
stronger η axiom for sums than we may have otherwise considered in natural de-
duction, corresponding to (case v of ι1(x) ⇒ E[ι1(x)]|ι2(x) ⇒ E[ι2(x)]) = E[v]
where E is an evaluation context of the chosen strategy. Restricting the η ax-
iom to co-variables captures the fact that languages which impose restrictions
on co-values have a correspondingly restricted notion of sums, as observed by
Filinski for call-by-name languages [5]. To test that this combination of β and η
axioms completely defines the behavior of sums, we derive Wadler’s [12] lifting
rule: (ς⊕) ιi(v) = µα.〈v||µ̃x.〈ιi(x)||α〉〉

ιi(v) =ηµ,η⊕ µα.〈ιi(v)||µ̃[ι1(x).〈ι1(x)||α〉|ι2(x).〈ι2(x)||α〉]〉 =β⊕ µα.〈v||µ̃x.〈ιi(x)||α〉〉

The fact that we have unrestricted β reduction for sums is crucial for deriving
the ς⊕ axiom. If we were only allowed to work with values, then the second step
of the derivation would not be possible.

Next, we would like to formulate products (⊗) that correspond to eager pairs
in the call-by-value setting. Constructing a pair can be given straightforwardly
as (v1, v2), following natural deduction style. Suppose now that we choose to
define the co-terms as the projections π1[e] and π2[e], to correspond with the
natural deduction terms π1(v) and π2(v). In order to implement eager pairs using
this formulation, we would be forced to restrict β reduction to commands of the
form 〈(V1, V2)||πi[e]〉, since we can only project out of an eager product when
both components are values. This restriction on the β axiom makes it impossible
to derive the appropriate lifting axioms for eager products, which means that
the β and η axioms would be necessarily incomplete. The fundamental problem
is that this formulation of pairs does not give us a µ̃-abstraction to rely on
for evaluating the sub-terms, forcing us to infect the β rule with details about
evaluation order. Instead, we define the co-term as a case abstraction, µ̃(x, y).c,
which corresponds to case analysis on the structure of a pair in natural deduction,
case v of (x, y)⇒ v′. As before, β reduction decomposes the structure, and the
η axiom recognizes a trivial case abstraction that immediately rebuilds the pair:

(β⊗) 〈(v1, v2)||µ̃(x, y).c〉 = 〈v1||µ̃x.〈v2||µ̃y.c〉〉 (η⊗) µ̃(x, y).〈(x, y)||α〉 = α

Notice that the β axiom is strong enough to break apart any pair (v1, v2) without
throwing anything away, allowing us to still evaluate the two sub-terms eagerly

afterward with the µ̃-abstractions generated by the β rule. For instance, in the
call-by-value strategy V, the command 〈(V, µ .c′)||µ̃(x,).c〉 rightly reduces to c′.
Additionally, because the β axiom breaks apart a pair containing (potentially)
non-values, it must give an order to the bindings of the elements, thereby deter-
mining an order of evaluation between them. In the β rule presented here, we
(arbitrarily) give priority to the first component of the pair. We can now pass
our test by deriving a lifting rule for products that pulls out the two components
so that they may be evaluated: (ς⊗) (v1, v2) = µα.〈v1||µ̃x.〈v2||µ̃y.〈(x, y)||α〉〉〉

(v1, v2) =ηµ,η⊗ µα.〈(v1, v2)||µ̃(x, y).〈(x, y)||α〉〉 =β⊗ µα.〈v1||µ̃x.〈v2||µ̃y.〈(x, y)||α〉〉〉

As with functions, we derive Wadler’s [12] more atomic rules that lift out one
term at a time:

(ς⊗x) (v1, v2) = µα.〈v1||µ̃x.〈(x, v2)||α〉〉 (ς⊗x) (V1, v2) = µα.〈v2||µ̃y.〈(V1, y)||α〉〉

The symmetry of the sequent calculus points out a dual formulation of pairs
and sums. This corresponds to the two forms of conjunction and disjunction
in Girard’s linear logic [6] and polarized logic [13,4]. Taking the mirror im-
age of sums (⊕) gives a formulation of products (&) using projection as primi-
tive that computes either the first or the second component on demand. The
mirror image of products (⊗) gives us a “classical” disjunction (`), result-
ing in a lazier sum which only evaluates the term as it is needed, once both
branches of its co-term have been reduced to co-values. The syntax and axioms
for these connectives are exactly dual to those given above. The & connective
has terms of the form µ(π1[α].c1|π2[β].c2) and the co-terms π1[e] and π2[e], and
the ` connective has the term µ[α, β].c and the co-term [e1, e2]. For example,
µ(π1[α].〈1||α〉|π2[β].〈2||β〉) is a & product that immediately returns 1 or 2 when
asked, and given a & product x, we may swap its responses by intercepting and
reversing the messages it receives: µ(π1[α].〈x||π2[α]〉|π2[β].〈x||π1[β]〉). Addition-
ally, a ` term may return a result to one of the two branches by responding to
one of the provided co-variables, for example responding with 1 to the left branch
is written µ[α, β].〈1||α〉. Intuitively, ⊕ and & express the concept of choice (the
choice to produce either the first or second or the choice to ask for the first or
second), whereas ⊗ and ` are about an amalgamation of two sub-parts.

To finish off the development, we also extend our call-by-value and call-by-
name strategies to account for the new (co-)terms. We extend the sets of V values
and N co-values as

V ∈ V alueV ::= . . . || (V, V ′) || ιi(V) || µ(π1[α].c|π2[β].c′) || µ[α, β].c

E ∈ CoV alueN ::= . . . || µ̃(x, y).c || µ̃[ι1(x).c|ι2(y).c′] || πi[E] || [E,E′]

and continue to accept every co-term as a V co-value and every term as a N
value. Notice in particular that the V strategy has a notion of eager and non-
eager pairs: the concrete ⊗ term, (v, v′), will eagerly evaluate its sub-terms before
becoming a value, whereas the abstract & term, µ(π1[α].c|π2[β].c′), is a value that
is waiting for a message before running one of its sub-commands. The meanings

of functions and & are similar in call-by-value, where we eagerly evaluate a
term down to an abstraction and then stop. On the other hand, the N strategy
implements the idea of a strict and non-strict sum: the ⊕ case abstraction is a
co-value that forces evaluation of its term, whereas the ` co-structure only forces
evaluation of its term when both branches are co-values, so that they are strict
in their input. This fundamental difference of the two views on disjunction has
been previously observed by Selinger [10], who pointed out that in call-by-name,
the two forms of disjunction cannot be isomorphic to one another. We also have
the dual property, that there are two fundamentally different forms of products
in call-by-value: a concrete pair and an abstract pair.

6 User-defined data and co-data types

By this point, we have arrived at a common pattern for adding basic (co-)data
types to the core µµ̃S -calculus, which we will now generalize to user-defined
types, similar to Herbelin’s notion of generalized connectives [7]. We will take
the data or co-data nature of a type constructor as a fundamental ingredient to
its definition, therefore allowing the user to declare new data types (with con-
crete terms) and co-data types (with abstract terms). These are two dual ways
of approaching data structures in programming languages: data corresponds to
ordinary data types in functional languages like ML, whereas co-data is more
akin to an interface for abstract objects that defines a fixed set of allowable
observations or messages. The utility of definition by observations has been pre-
viously shown for infinite structures [1]. We present (co-)data declarations in the
style of a statically typed language, like Haskell. However, since we are focused
on an equational theory in an untyped setting, we use the declarations as a way
to extend the language with new syntactic forms for structures and abstractions
and to extend the theory with rules defining their operational meaning.

6.1 Defining basic data and co-data types

We first approach user-defined (co-)data types by example, and observe how the
basic type constructors we have considered so far fit within the same general
framework. To express the declarations in their full generality, we use a richer
notation than that provided for ordinary algebraic data types in ML. Therefore,
consider how the syntax of GADT declarations in Haskell can be applied to
ordinary algebraic data types. For instance, the basic Either and Both (a tuple of
two components) type constructors in Haskell are declared using GADT notation
as follows:

dataEitherA Bwhere

Left : A→ EitherA B

Right : B → EitherA B

dataBothA Bwhere

Pair : A→ B → BothA B

The declaration of EitherA B corresponds with the sequent declaration of A ⊕
B in Figure 8, both of which introduce a data type with two constructors:

dataA⊕Bwhere

ι1 : A ` A⊕B|
ι2 : B ` A⊕B|

dataA⊗Bwhere

pair : A,B ` A⊗B|
data 1where

unit : ` 1|
data 0where

dataA−Bwhere

uncall : A ` A−B|B

codataA&Bwhere

π1 : |A&B ` A
π2 : |A&B ` B

codataA`Bwhere

split : |A`B ` A,B
codata⊥where

tp : | ⊥ `
codata>where

codataA→ Bwhere

call : A|A→ B ` B

Fig. 8. Declarations for basic (co-)data types.

one accepting an input of type A and the other an input of type B. However,
the sequent declaration separates input from output with entailment, `, rather
than a function arrow, and explicitly distinguishes the result produced by the
constructor as A ⊕ B|. Similarly, the constructor Pair from the declaration of
BothA B can be seen as a curried form of the constructor pair from A ⊗ B. In
addition, the data declarations of 1 and 0 in Figure 8 correspond to the usual
unit and empty types in functional programming languages.

However, the rest of the declarations in Figure 8 step outside the usual notion
of data type in functional programming languages, and illustrate the various pos-
sibilities for defining new type constructors in the sequent calculus. The co-data
declaration for A&B introduces a pair that is uniquely defined by their first and
second projections, which consume the distinguished input written as |A & B,
rather than by a structure containing two elements. The declaration for A ` B
demonstrates that a (co-)constructor in the sequent calculus may have multiple
outputs. The co-data declarations for > and ⊥ give a dual notion of the unit and
empty types, respectively, where the unit is an abstract object with no possible
observations, and the empty type has one observation that produces no output.
We can also express implication, A → B, and its dual, A − B, as user-defined
types that make use of both input and output at the same time.

6.2 Defining new data and co-data types

Next, we consider how to introduce a new data type to the µµ̃S -calculus, in its full
generality. A data type is defined by cases over a set of constructors, K1, . . . ,Kn.
The general form of declaration for the new data type F(

#»

X), where
#»

X are zero
or more type variables2, is given in Figure 9. The type variables may appear in
any of the types

#»

A and
#»

B , and each constructor has F(
#»

X) as the distinguished

2 We write
»
Xi

i
to mean a sequence X1, . . . , Xn of zero or more elements indexed by

i. The index is left implicit when it is clear from context.

dataF(
»
Xj

j
)where

K1 :
»
A1j

j ` F(
»
Xj

j
)| # »
B1j

j

. . .

Kn :
»
Anj

j ` F(
»
Xj

j
)| # »
Bnj

j

codataG(
»
Xj

j
)where

H1 :
»
A1j

j |G(
»
Xj

j
) ` # »

B1j
j

. . .

Hn :
»
Anj

j |G(
»
Xj

j
) ` # »

Bnj
j

Fig. 9. The general forms of (co-)data declarations in µµ̃FS .

(βF) 〈Ki(#»ej
j , #»vj

j)||µ̃[
»

Ki(
»αij

j , # »xij
j).ci

i

]〉 = 〈µ # »αij
j .〈 #»vj

j ||µ̃ # »xij
j .ci〉|| #»ejj〉

(ηF) µ̃[
»

Ki(
»αij

j , # »xij
j).〈Ki(# »αij

j , # »xij
j)||γ〉

i

] = γ

(βG) 〈µ(
»

Hi[
»xij

j , # »αij
j].ci

i

)||Hi[#»vj
j , #»ej

j]〉 = 〈 #»vj
j ||µ̃ # »xij

j .〈µ # »αij
j .ci|| #»ejj〉〉

(ηG) µ(
»

Hi[
»xij

j , # »αij
j].〈z||Hi[# »xij

j , # »αij
j]〉

i

) = z

Fig. 10. The β and η axioms for (co-)data of the µµ̃FS equational theory.

output type on the right of the sequent. Syntactically, each constructor builds a
new term not only from other terms, as per usual in a functional programming
language, but also possibly from co-terms that represent reified contexts. The
data declaration for F(

#»

X) introduces the family of data structures, Ki(
#»e , #»v), as

new terms and the single case abstraction, µ̃[
»

K(#»α , #»x).c], as the new co-term of

that type. In addition to the syntax for the data type F(
#»

X), we also have two
primitive axioms, βF and ηF shown in Figure 10. Following the same pattern as
pairs and sums, the axioms are strategy independent and rely on µ and µ̃ in µµ̃S
to manage evaluation order. Binding the sequence of terms #»v = v1, v2, . . . , vn to
the sequence of variables #»x = x1, x2, . . . , xn is defined as

〈 #»v ||µ̃ #»x .c〉 , 〈v1||µ̃x1.〈v2||µ̃x2. . . . 〈vn||µ̃xn.c〉 . . .〉〉

and analogously for binding a sequence of co-terms to co-variables. The βF axiom
performs case analysis by looking up the appropriate command to run based on
the constructor and binding the sub (co-)terms of the structure by matching it
with the appropriate pattern. The ηF axiom states that an unknown co-value γ
is treated the same as a trivial case abstraction that re-constructs all matched
structures and forwards them along to γ. As before, we have a family of axioms
that lift out sub-(co-)terms in a data structure, which can be derived by following
the same pattern shown in Section 5 for products and sums.

Introducing a new co-data type to the µµ̃S -calculus follows the same gen-

eral pattern, but with a twist. Instead of defining a co-data type G(
#»

X), by its
constructors, which produce a data structure as output, it is defined by cases
over its possible co-constructors which build concrete co-structures on the side
of co-terms. The co-structures can be thought of as observations or messages
that are sent to and analyzed by abstract terms of type G(

#»

X). It follows that

(
dataF(

#»
X)where

»

K :
#»
A ` F(

#»
X)| #»B

)◦
, codataF(

#»
X)where

»

K :
#»
B |F(

#»
X) ` #»

A(
codataG(

#»
X)where

»

H :
#»
A |G(

#»
X) ` #»

B
)◦
, dataG(

#»
X)where H :

#»
B ` G(

#»
X)| #»A

〈v||e〉◦ , 〈e◦||v◦〉

(µα.c)◦ , µ̃α◦.c◦ (K(#»e , #»v))◦ , K[
#»

e◦ ,
#»

v◦] (µ(
»

H[#»x , #»α].c))
◦
, µ̃[

»

H(
»

x◦ ,
»

α◦).c◦]

(µ̃x.c)◦ , µx◦.c◦ (H[#»v , #»e])◦ , H(
#»

v◦ ,
#»

e◦) (µ̃[
»

K(#»α , #»x).c])
◦
, µ(

»

K(
»

α◦ ,
»

x◦).c◦)

Fig. 11. The duality operation for the µµ̃FS -calculus.

the co-data declaration mirrors the general form of a data declaration, as shown
in Figure 9. Likewise, the syntax introduced for the co-data type G(

#»

X) is dual
to the data form. We now have a family of co-data structures, Hi[

#»v , #»e], as new

co-terms, and a single new term, µ(
»

H[#»x , #»α].c). This term is a co-case abstraction
which responds to a co-data structure, i.e., a message, by giving a command to
perform for every possible case.

Following the exchanged roles between term and co-term, the primitive βG

and ηG axioms are mirror images of their counterparts for data types, as seen in
Figure 10. The βG axiom performs case analysis on a co-constructor, matching
the co-structure to the given pattern and running the appropriate command
given by the abstract term. The ηG axiom wraps an unknown value z in a co-case
abstraction that just forwards every co-structure to that original value. We also
have a family of axioms that lift out sub-(co-)terms in a co-data structure, which
exactly mirror the derived lifting axioms for data types.

6.3 Duality and strategies for user-defined (co-)data types

We also extend the duality relationship of Curien and Herbelin [3] and Wadler [11]
to be parametric over evaluation strategies and user-defined (co-)data types. The
duality operation, given in Figure 11, transforms a program in the µµ̃FS -calculus
into its dual in the µµ̃F

◦

S◦ -calculus. The duality operation flips the roles of a pro-
gram, mapping terms into co-terms, co-terms into terms, and exchanges the two
sides of a command. The dual of a set of declared (co-)data types, F , is given by
the dual of each (co-)data type declaration of F . In addition, we can automat-
ically generate the dual of a strategy, S◦, by taking the point-wise dual of the
values and co-values of S. Notice that the double dual of a (co-)data declaration
is identical to the original declaration. This gives us soundness and involution of
duality that is parametric in evaluation strategy and (co-)data types.

Theorem 2. – If µµ̃FS ` c = c′ then µµ̃F
◦

S◦ ` c◦ = c′
◦
.

– c◦◦ , c, S◦◦ , S, and F◦◦ , F .

It is worthwhile to pause over the statement of this theorem: for every strategy
and collection of (co-)data types under which two commands are equated, the

V ∈ V alueV ::= x || Ki(#»e ,
#»
V) || µ(

»

H(#»x , #»α).c) E ∈ CoV alueV ::= e

V ∈ V alueN ::= v E ∈ CoV alueN ::= α || µ̃[
»

K(#»α , #»x).c] || Hi[#»v ,
#»
E]

Fig. 12. Call-by-value (V) and call-by-name (N) strategies of µµ̃FS .

JKi(#»e , #»v)KV = λα.Jv1KVλx1. . . . JvnKVλxn.α Ki(
»

JeKV , #»x)

Jµ(
»

H[#»x , #»α].c)KV = λβ.β λγ. case γ of
»

H(#»x , #»α)⇒ JcKV

Jµ̃[
»

K(#»α , #»x).c]KV = λz. case z of
»

K(#»α , #»x)⇒ JcKV

JHi[#»v , #»e]KV = λx.Jv1KVλy1. . . . JvnKVλyn.x Hi(
#»y ,

»

JeKV)

Fig. 13. Call-by-value (V) CPS transformation of µµ̃FS .

strategy and (co-)data types obtained from their duals equate the dual com-
mands. In addition to recognizing a duality between two hand-crafted strategies
and sets of connectives, like for N and V, this theorem demonstrates a mechan-
ical procedure for generating the semantic dual of any strategy and any set of
(co-)data types, as well as the dual to any theory given as an instance of µµ̃FS .

Finally, we need to choose an evaluation strategy for each newly declared
(co-)data type. We can do this generically across user-defined (co-)data by de-
ciding on a schema for extending the sets of values and co-values based on
(co-)data declarations. For our call-by-value strategy V, we can say that data
structures are values if every sub-term is a value, abstract terms are values, and
every co-term is a co-value, as shown in Figure 12. This schema agrees with the
definition of our call-by-value strategy for all the previously considered (co-)data
types, and gives us exactly the same equational theory as we had before. We can
provide a schema for our call-by-name evaluation strategy N in the dual way.
In this case, we say that co-structures are co-values if every sub-co-term is a
co-value, abstract co-terms are co-values, and every term is a value. Likewise,
this schema agrees with the previous definition of our call-by-name strategy.

In addition, we extend the basic call-by-value CPS transformation J KV with
clauses for the newly declared (co-)data types by encoding (co-)structures and
(co-)case abstractions into a CPS λ-calculus extended with user-defined data
types, à la ML, as given in Figure 13. The call-by-name CPS transformation is
defined as the dual of the call-by-value transformation, J KN = J ◦KV . It follows
that the call-by-value and call-by-name equational theories are sound and com-
plete with respect to the call-by-value and call-by-name CPS transformations,
respectively.

Theorem 3. µµ̃FS ` c = c′ if and only if βη ` JcKS = Jc′KS , for S = V or N .

The parametric µµ̃S -calculus extended with user-defined (co-)data types encom-
passes Wadler’s dual sequent calculus [12], where conjunction and disjunction
are mapped to the A⊕B and A⊗B data types for the call-by-value calculus, and

V ∈ V alueLV ::= x || Ki(
#»
E,

#»
V) || µ(

»

H[#»x , #»α].c) CLV ∈ ContextLV ::= � || 〈v||µ̃x.CLV〉

E ∈ CoV alueLV ::= α || µ̃[
»

K(#»x , #»α).c] || Hi[#»v ,
#»
E] || µ̃x.CLV [〈x||E〉]

Fig. 14. The LV strategy for µµ̃FS .

V ∈ V alueLN ::= x || Ki(#»e ,
#»
V) || µ(

»

H[#»x , #»α].c) || µα.CLN [〈V ||α〉]

E ∈ CoV alueLN ::= α || µ̃[
»

K(#»x , #»α).c] || Hi[
#»
V ,

#»
E] CLN ∈ ContextLN ::= � || 〈µα.CLN ||e〉

Fig. 15. The LN strategy for µµ̃FS .

to the A&B and A`B co-data types for the call-by-name calculus. Additionally,
negation is mapped to the co-data type form of negation for call-by-value, and
to the data type form of negation for call-by-name.

Remark 2. So far, we have focused our attention only on two evaluation strate-
gies: the N strategy for call-by-name and the V strategy for call-by-value. How-
ever, there are other strategies that can be studied by this parametric approach.
For instance, we can adapt the “lazy value” strategy [2], LV, to the paramet-
ric µµ̃S -calculus with user-defined (co-)data types as shown in Figure 14. The
LV strategy uses the same notion of value as in V, but restricts co-values to
only those co-terms that “need” a value in order to continue. In this way, the
LV behaves in a call-by-name manner by first prioritizing the co-term, and
only evaluates terms when demanded. The intuition is that in a context like
〈v1||µ̃y1.〈v2||µ̃y2.�〉〉, v1 and v2 are delayed computations whose results are bound
to y1 and y2 so that they are shared. The co-term µ̃x.〈v1||µ̃y1.〈v2||µ̃y2.〈x||E〉〉〉
is strict since 〈x||E〉 is the actively running command and it needs the value of
x in order to continue, making the whole µ̃-abstraction a co-value. In the com-
mand 〈µα.c1||µ̃x.c2〉, we begin to evaluate c2 as if we performed a call-by-name
substitution until the value of x is demanded (in a command like CLV [〈x||E〉]),
and then switch to evaluating c1 by the µE rule. The call-by-need LV strategy
demonstrates that there are more than two possible strategies of interest, and
that more subtle concerns about evaluation order, such as sharing the results of
computations in a non-strict setting, is captured by the parametric µµ̃S -calculus.

Furthermore, the procedure illustrated by Theorem 2 can be used to mechan-
ically generate a strategy dual to call-by-need, LN , as shown in Figure 15. In
this setting, priority is initially given to the producer, but we still share the work
needed to reduce a consumer. This strategy may be thought of as call-by-value
with a delayed form of control effects, so that a continuation is reduced first
before being copied. Delayed control effects introduce new values of the form
µα.〈µβ.〈V ||α〉||e〉, where we are returning the value V from inside a delayed cap-
ture of e. LN implements the dual form of sharing as call-by-need: it behaves
like call-by-value but only captures strict contexts in the sense of call-by-name.

7 Composing multiple strategies

We have now seen how to reason about data and co-data in the sequent calculus
according to multiple different evaluation strategies by capturing the essence
of the strategy as the parameter to the equational theory. The parameter for
the strategy fixes evaluation order once and for all as a global property of the
language. However, can we also allow for a program to make use of more than
one strategy at a time? Or put another way, can we take several independently
consistent strategies and compose them together into a composite strategy for
the parametric equational theory, while still maintaining consistency?

The problem calls for a more subtle approach than just taking the union of
two or more strategies. For example, if we take the simple union of the call-by-
name N and call-by-value V strategies, so a (co-)term is a (co-)value if it fits
either the N or V notions of (co-)value, then the combined strategy considers ev-
ery term and co-term to be a (co-)value. In the command 〈µα.c||µ̃x.c′〉, we could
consider the term to be a value by N criteria and the co-term to be a co-value
by V criteria, leading back to the fundamental inconsistency we were trying to
avoid. The issue is that allowing a N (co-)term interact with a V (co-)term opens
the door for further inconsistencies, even though the two strategies are perfectly
consistent in isolation. The solution comes by disallowing (co-)terms from dif-
ferent strategies from interacting directly with one another. If the strategy S
is consistent, then we know that every command is interpreted consistently if
we evaluate both the term and co-term by S. Our goal is to ensure that every
command consistently interprets both term and co-term by the same strategy,
and that this consistency is maintained by the rules of the equational theory.

One approach for ensuring that terms only communicate with co-terms fol-
lowing the same strategy is to think about types. We can take all the types
which classify programs and put them into different universes, or kinds, so that
each kind represents one primitive strategy. However, a full static typing disci-
pline is more than necessary for ensuring that programs are consistent. After all,
we were able to consistently reason about untyped programs by using a single
global strategy, and ideally we would like to keep this property when possible.
Therefore, we relax the typing relationship by collapsing all of the types for a
particular kind into a single universal type. The notion of having more than one
universal type for untyped evaluation is similar to Zeilberger’s [14] “bi-typed”
system, except that we admit more than two universes, thereby allowing a pro-
gram to make use of more than two primitive evaluation strategies at a time and
in other combinations like call-by-value and call-by-need. To make the strat-
egy for interpreting a (co-)term apparent from its syntax, we explicitly annotate
(co-)variables with their kind. An inference system for checking kinds of the core
calculus, shown in Figure 16, resembles the type system for λµµ̃ [3] except at
one level up. The most interesting rule is the cut rule for forming commands
that only allows v and e to interact if they both belong to a type of the same
kind, ensuring that we interpret v and e according to the same strategy.

In order to allow for user-defined (co-)data types in the presence of multiple
primitive strategies, we need to consider kinds when declaring a new (co-)data

Γ, x :: S ` xS :: S|∆
c :: (Γ ` α :: S,∆)

Γ ` µαS .c :: S|∆

Γ |αS :: S ` α :: S,∆
c :: (Γ, x :: S ` ∆)

Γ |µ̃xS .c :: S ` ∆

Γ ` v :: S|∆ Γ |e :: S ` ∆
〈v||e〉 :: (Γ ` ∆)

Fig. 16. Type-agnostic kind system for the core calculus.

type. We will illustrate (co-)data declaration with explicit, multiple kinds by
example in lieu of presenting the general form. We can declare a strict pair A⊗B,
where both components are evaluated eagerly, by annotating the declaration in
Figure 8 so that A, B, and A⊗B belong to the kind V:

data (A : V)⊗ (B : V) : Vwhere pair : A : V, B : V ` A⊗B : V|

The annotated declaration for A ⊗ B : V introduces the term pair(v, v′) and
co-term µ̃[pair(xV , yV).c]. In addition, the declaration extends the set of V values
with pair(V, V ′), where V and V ′ are V values, as intended. We are also at liberty
to declare a pair using more interesting combinations of strategies, as expressed
by kinds. For example, we can introduce a lazy pair MixedProduct(A,B) of the
kind N where the first component is evaluated strictly:

dataMixedProduct(A : V, B : N) : N where

MixedPair : A : V, B : N ` MixedProduct(A,B) : N|

The declaration of MixedProduct(A,B) : N introduces the term MixedPair(v, v′)
and co-term µ̃[MixedPair(xV , yN).c], both of which are taken to be N (co-)values.
The interesting interplay between the V and N strategies in a MixedProduct is
revealed during β reduction:

〈MixedPair(v, v′)||µ̃[MixedPair(xV , yN).c]〉 =β,µ̃V 〈v||µ̃xV .c
{
v′/yN

}
〉

The intended behavior is that after breaking apart the mixed pair, v is evaluated
eagerly until it is reduced to a value according to the V strategy, after which the
value is substituted for xV . On the other hand, v′ is interpreted according to the
N strategy, so that it is already a value and may be substituted immediately.

Observe that the parametric equational theory instantiated with multiple
strategies

#»S and type constructors F , written µµ̃F#»S , preserves the well-kindedness
of commands and (co-)terms. The axioms in need of the most care are the η ax-
ioms, which only apply to variables of the appropriate kind. For instance, the η
axiom for A ⊗ B of the kind V only applies to a co-variable αV , whereas the η
axiom for MixedProduct(A,B) of the kind N only applies to αN .

Theorem 4. If
#»S are consistent strategies, then µµ̃F#»S is consistent for well-

kinded commands and (co-)terms.

8 Conclusion

The parametric theory provides a direct framework for reasoning about the be-
havior of programs with both data and co-data in the sequent calculus. We

may understand the meaning of a sequent calculus program using both data
structures and message-passing in terms of the intended evaluation strategy. As
future work, we would like to develop the theory of the sequent calculus so that
it may provide a foundation for objects as a form of co-data, giving us a frame-
work where a notion of object-oriented programming is expressed as the dual
paradigm to functional programming. This will involve extending the theory
with more advanced features such as inductive and co-inductive forms of self-
reference, subtyping, and parametric polymorphism. In addition, we would like
to study the suitability of the sequent calculus as an intermediate language in
a compiler. Since the sequent calculus provides a framework in which low-level
implementation details can be better expressed than in the λ-calculus, we want
to study its impact on reasoning about optimizations and program analysis.

Acknowledgments: We would like to thank Pierre-Louis Curien, Hugo Herbe-
lin, and Alexis Saurin for their helpful input and discussion in early versions of
this paper, and to acknowledge the support of INRIA and Paris Diderot Uni-
versity while both authors were visiting Paris, where this work was carried out.
The authors have also been supported by NSF grant CCF-0917329 and INRIA
Équipe Associée SEMACODE.

References

1. A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: programming
infinite structures by observations. POPL ’13, 2013.

2. Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and duality. In
TLCA, volume 6690 of lncs, 2011.

3. P.-L. Curien and H. Herbelin. The duality of computation. In International Con-
ference on Functional Programming, pages 233–243, 2000.

4. P.-L. Curien and G. Munch-Maccagnoni. The duality of computation under focus.
Theoretical Computer Science, pages 165–181, 2010.

5. A. Filinski. Declarative Continuations and Categorical Duality. Master thesis,
DIKU, Danmark, Aug. 1989.

6. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
7. H. Herbelin. Duality of computation and sequent calculus: a few more remarks.

http://pauillac.inria.fr/ herbelin/publis/full-dual-lk.pdf, 2012.
8. G. Munch-Maccagnoni. Focalisation and classical realisability. In Computer Sci-

ence Logic, pages 409–423. Springer, 2009.
9. S. Ronchi Della Rocca and L. Paolini. The Parametric λ-Calculus: a Metamodel

for Computation. Springer-Verlag, 2004.
10. P. Selinger. Control categories and duality: on the categorical semantics of the

lambda-mu calculus. MSCS, 11(2):207–260, 2001.
11. P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of ICFP, pages

189–201. ACM, 2003.
12. P. Wadler. Call-by-value is dual to call-by-name–reloaded. Term Rewriting and

Applications, pages 185–203, 2005.
13. N. Zeilberger. On the unity of duality. Annals of Pure Applied Logic, 153(1-3):66–

96, 2008.
14. N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD

thesis, Carnegie Mellon University, 2009.

	The duality of construction
	 Paul Downen & Zena M. Ariola
	Introduction
	Introduction to the sequent calculus
	The parametric core
	Functions
	Basic data and co-data structures
	User-defined data and co-data types
	Defining basic data and co-data types
	Defining new data and co-data types
	Duality and strategies for user-defined (co-)data types

	Composing multiple strategies
	Conclusion

