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1. Proposal
The versatile and expressive capabilities of delimited control and
composable continuations have gained it attention in both the the-
ory and practice of functional programming with effects. On the
more theoretical side, delimited control may be used as a basis for
explaining and understanding a wide variety of other computational
effects, like mutable state and exceptions, based on Filinski’s [8, 9]
observation that composable continuations can be used to repre-
sent any monadic effect. On the more practical side, forms of de-
limited control have been implemented in real-world programming
languages [6, 10, 15], and used in the design of libraries like for
creating web servers [10].

However, the design space for adding composable continua-
tions to a programming language is vast, and a number of dif-
ferent definitions of delimited control operators have been pro-
posed [3, 4, 7, 12, 21]. This has, in part, caused the theory and prac-
tice of delimited control to diverge somewhat from one another: the
operators we most often study in theory are typically not the ones
we use in practice. In this 30 minute talk, we will consider some of
the fundamental, though subtle, differences in delimited control op-
erators that appear in the literature and in programming languages,
and some of the efforts to connect these together. We will also look
at a common extension of delimited control that occurs in prac-
tice — the ability to delimit multiple different operations by name,
much like exception handlers for specific subsets of errors — and
how it provides another, novel approach for bridging the gap be-
tween the different frameworks.

2. A zoo of delimited control
At its most basic, delimited control is defined in two parts: (1) a
delimiter that isolates some (potentially effectful) computation in
a program, and (2) a control operator that captures part of the
evaluation context (i.e. call-stack, control state, or “next steps in
the program”) up to the nearest delimiter and creates a first-class
continuation that acts as a functional representation of the context.
Taken together, the delimiter serves to pose a limit on the range of
influence that the control operator can exert over the future course
of the program. In other words, if we have the delimiter, #, and
control operator, F , then an expression like

#(2× (F (λk.M)) ≤ 10)

[Copyright notice will appear here once ’preprint’ option is removed.]

〈E[S V ]〉 7→ 〈V (λx.〈E[x]〉)〉
#(E[F V ]) 7→ #(V (λx.E[x]))

〈E[S0 V ]〉0 7→ V (λx.〈E[x]〉0)

#0(E[F0 V ]) 7→ V (λx.E[x])

Figure 1. Four different pairs of delimiters and control operators.

represents a closed off sub-computation, where the F operator is
only capable of capturing the evaluation context 2×� ≤ 10. That
way, the delimiter protects the surrounding context from the control
operator, so that even in the larger program

if #(2× (F (λk.M)) ≤ 10) then red else blue

the control operator can still only see the context 2×� ≤ 10.
However, even within this general idea, we already have some

choices as to how the delimiter and control operator interact with
one another. After the control operator captures an evaluation con-
text, does it remove the surrounding delimiter that marked the end
of the context? Does the control operator create a continuation that
includes the delimiter as well (e.g. the function λx.#(2 × x ≤
10))? Both of these questions can be answered either way, giving
us four possibilities [6] as summarized in Figure 1:1

+F+ Both delimiters are present, giving us the shift and reset
operators (S and 〈 〉) of Danvy and Filinski [3, 4].

+F− Only the surrounding delimiter is present, giving us the
control and prompt operators (F and #) of Felleisen [7, 21].

−F+ Only the delimiter in the created continuation is present,
giving us the shift0 and reset0 operators [18, 20] (S0 and 〈 〉0).

−F− Neither delimiter is present, giving us control0 and prompt0
(F0 and #0), similar to cupto [12] or withSubCont [6].

These different between the four formulations of delimited con-
trol are not just minor details. The different interactions between
the control operator and delimiter can have a major impact on the
result of a program. For example, consider the following list traver-
sal function which makes use of shift and reset [2]:

traverse xs = 〈visit xs〉
where visit [] = []

visit (x :: xs) = visit (S(λk.x :: (k xs)))

This function behaves like a copying identity function on lists,
so that evaluating traverse [1, 2, 3] gives back the list [1, 2, 3].
Contrarily, if we just replace the shift and reset in traverse with
control and prompt, instead we end up with a list reversing func-
tion, so that evaluating traverse [1, 2, 3] gives back [3, 2, 1]. We

1 V stands for a value and E stands for an undelimited evaluation context.
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can see similar differences between shift and shift0. For exam-
ple, consider the continuation swapping function in terms of shift,
where we capture two continuations and then apply them in the
reverse order:

swap x = S(λk1.S(λk2.k1 (k2 x)))

The net effect of this function is to just yield x, so that eval-
uating 〈〈(swap 1)× 2〉+ 10〉 gives 12. If instead we replace
the shift in swap with shift0, we end up swapping the nearest
two evaluation contexts delimited by reset0, so that evaluating
〈〈(swap 1)× 2〉0 + 10〉0 results in 22 because we double after
adding 10.

In general, shift and reset have been widely studied delimited
control operators, in part due to the fact that they are defined by a
simple continuation-passing style (CPS) transformation in the ordi-
nary λ-calculus [3, 4]. This has enabled developments of high-level
tools like an equational theory [13] and type system [3] for reason-
ing about programs. More recently, shift0 and reset0 have joined in
this study with a similarly simple CPS transformation [18], equa-
tional theory [17], and type system [18]. On the other hand, im-
plementations of delimited control in Racket [10], Haskell [6], and
OCaml [15] have been based on control and prompt, or control0
and prompt0 style of operators.2 So it seems that we prefer to study
the ∗F+ family of delimited control, but favor implementing the
∗F− family. To bridge the gap, there have been several different
encodings of the ∗F− family of operators into the ∗F+ family.
Shan [20] gives an encoding of control into shift (as well as en-
codings of shift0 and control0) using a recursive type of contin-
uation. Kiselyov [14] gives an alternative encoding of control in
terms of shift using a sum type of two cases: a request for control
or a returned value. Biernacki et al. [2] gives an abstract machine
for control, from which a direct implementation using shift can be
derived.

3. Multiple prompts and the power of two
An extension to delimited control often found in practice gives the
ability to tag or name delimiters and control operations, so that the
two only interact when they share the same name. For instance, the
control operator Fp1 in the term

#p1(#p2((Fp1(λk. . . .))× 2) + 10)

can capture the context #p2(� × 2) + 10 up to the prompt p1,
rather than just the context �× 2 delimited by the nearest prompt.
This extension of delimited control is shared by the major imple-
mentations of delimited control in Racket [10], Haskell [6], and
OCaml [15], and has been used to implement other effects like dy-
namic binding [16] and call-by-need evaluation [11].

In order to better understand the behavior of delimited con-
trol with multiple prompts, Downen and Ariola [5] developed a
framework, called the λµ̂0-calculus, for expressing such opera-
tors. It extends the λµt̂p-calculus [1], a language for expressing
shift and reset based on Parigot’s λµ-calculus [19], with multi-
ple dynamically-bound continuation variables. The λµ̂0-calculus
presents a more fine-grained explanation of delimited control with
a number of more low-level operations:

• µα.c: capture the current continuation and substitute it for α.
• [q]M : run M with q as the current continuation, so that when
M returns a value it is passed to q.
• µ0α̂.c: defer the current continuation by binding it to the dy-

namic variable α̂.

2 Of note, there are two native implementations of shift and reset: in
OchaCaml (an extension of Caml light) and more recently in Scala.

〈M〉α̂0 = µ0α̂.[α̂]M

Sα̂0 = λh.µβ.[α̂]0∆.h (λx.µ0α̂.[∆][β]x)

#α̂
0 (M) = µ0t̂p.[t̂p]µ0α̂.[t̂p]M

F α̂0 = λh.µβ.[α̂]0∆.h (λx.µ0t̂p.[∆][β]x)

Figure 2. Encodings of the Sα̂0 /〈M〉α̂0 and F α̂0 /#α̂
0 control opera-

tors in the λµ̂0-calculus.

• [α̂]0∆.M : lookup the continuation dynamically bound to the
nearest α̂, substituting the prefix of more recent bindings in the
dynamic environment for ∆, and then run M with the found
continuation and the remainder of the dynamic environment.
• [∆]c: extend the dynamic environment with all the bindings of

∆ and then run c.

Intuitively, the previous program using two prompts may be ex-
pressed by a similar program in the λµ̂0-calculus using two dy-
namic continuation variables:

µ0α̂1.[α̂1]((µ0α̂2.[α̂2]((µβ.[α̂1]0∆.. . .)× 2)) + 10)

In this case, β receives only the current continuation up to the
nearest delimiter, [α̂2](� × 2). The rest of the captured context,
[α̂1]((µα̂2.�) + 10), which is hidden behind dynamically bound
continuation variables, is found during the lookup of α̂ and substi-
tuted for ∆.

The λµ̂0-calculus expresses delimited control in a similar style
as shift0: we can remove a surrounding delimiter due to a control
effect (as in the dynamic lookup [α̂]0∆.M ), but the syntax of the
language forces continuations to insert a delimiter to be used (as
in µ0β̂.[α]M ). We can therefore give an encoding of shift0 and
reset0 with multiple prompts in Figure 2, where the named reset0
delimiter binds the current continuation to a dynamic variable bear-
ing that name, and the higher-order shift0 up to a specific delim-
iter is spelled out by a number of smaller operations. To recover
the ordinary shift0 and reset0, we can limit ourselves to just one
dynamic continuation variable, as in the single dynamic t̂p of the
λµt̂p-calculus.

However, the λµ̂0-calculus is also fully capable of expressing
operators like control and control0 as well, by making use of at
least two dynamic continuation variables. The intuition is that we
isolate one dynamic continuation variable, say t̂p, for the purpose
of returning and propagating values only. Then, the other dynamic
variable(s) may be used for delimited control effects as before.
The encoding of the multi-prompt control0 and prompt0 are also
given in Figure 2. Notice that the only difference between Sα̂0 and
F α̂0 is in the continuation they create: instead of inserting an α̂
delimiter, the F α̂0 continuation “returns” to its calling context by
using t̂p. The encoding of #α̂

0 also makes use of t̂p, by binding
α̂ to the “empty” continuation [t̂p]� and then evaluating M in
that empty continuation. The trick used in this encoding bears a
striking resemblance to Kiselyov [14] representation of control,
where there are two possible return values: an ordinary return and
a request for control. Here, we find that a framework of multi-
prompt delimited control already has this facility built-in: we can
always isolate one prompt as the special purpose “return” prompt.
This means that shift0 is capable of encoding control0 by using
two prompts. Additionally, in the presence of multiple prompts we
can focus on operators like shift and shift0 while still providing the
capabilities of control.
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A. On marked stacks and dynamic environments
Perhaps the closest framework to the λµ̂0-calculus [5] is the
Monadic Framework [6], which provides operations in the style
of the control0 operator with multiple prompt0s. Both frameworks
present the semantics of delimited control using both a continua-
tion (representing an evaluation context of the pure, call-by-value
λ-calculus) and a meta-continuation (which manages the delim-
iting effect of control in a program by storing continuations that
are hidden behind a delimiter). The primary difference between
the two systems is in the treatment and representation of meta-
continuations.

In the λµ̂0-calculus, control delimiters are achieved by us-
ing dynamically bound continuation variables, and so the meta-
continuation is represented as a dynamic environment. In other
words, the type of the meta-continuation can be thought of as a list
associating dynamic variables to continuations:

MetaContinuation = [DynV ar ∗ Continuation]

Since the meta-continuation is a particular kind of dynamic envi-
ronment, the only operation we have on the meta-continuation is to
lookup a particular variable. For example, we would see the follow-
ing result for dynamic variable lookup in a particular environment
that binds the variables α̂1, α̂2, α̂3 to the continuations k1, k2, k3
(the environment grows to the right, so α̂1 7→ k1 is the most recent
binding)

[α̂3 7→ k3, α̂2 7→ k2, α̂1 7→ k1](α̂2)

= ([α̂3 7→ k3], k2, [α̂1 7→ k1])

where the environment has been partitioned into three parts: (1) the
prefix of the environment containing bindings that are more recent
than the one we are looking for ([α̂1 7→ k1]), (2) the continuation
bound to the dynamic variable α̂2 (k2), and (3) the remaining
dynamic environment containing older bindings ([α̂3 7→ k3]).

In the Monadic Framework, control delimiters are achieved by
storing a stack of both ordinary continuations and prompt markers.
In other words, the type of the meta-continuation can be thought
of as a list of prompt markers and continuations in an arbitrary
arrangement:

MetaContinuation = [Prompt+ Continuation]

Fundamentally, we have two different operations on this meta-
continuation: sending a value to the next available continuation,
and splitting3 the meta-continuation at a specified prompt. Sending
a value involves skipping past prompts in the meta-continuation
until a continuation is found. For example, in a particular stack,
[k3, p3, p2, k2, k1, p1], of the prompts p1, p2, p3 and continuations
k1, k2, k3 (the stack here grows to the right, so p1 is the most
recent) we would have:

send x [k3, p3, p2, k2, k1, p1] = k1 x [k3, p3, p2, k2]

On the other hand, splitting the same stack at the prompt p2 gives:

split p2 [k3, p3, p2, k2, k1, p1] = ([k3, p3], [k2, k1, p1])

where the stack has been partitioned into everything more recent
than the prompt we’re splitting ([k2, k1, p1]) and everything older
([k3, p3]).

3 The Monadic Framework [6] actually uses two separate operations for
splitting, returning just the first part and just the second part after the split,
but it is equivalent to the presentation here.
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Now, let’s consider how the meta-continuations in these two
frameworks might relate to one another. On the one hand, it appears
straightforward to embed a dynamic environment into a marked
stack: just flatten the list and remove the pairing that associates
variables to continuations. For example, we have the following
embedding of the above dynamic environment:

[α̂3 7→ k3, α̂2 7→ k2, α̂1 7→ k1] = [k3, α̂3, k2, α̂2, k1, α̂1]

In this view, the dynamic environment can be seen like a discipline
imposed on the meta-continuation stacks of the Monadic Frame-
work. On the other hand, it is not so obvious how to encoding a
free-form stack into a dynamic environment, or how to provide the
two different operations, send and split, in terms of just variable
lookup. The key is to choose a single dynamic continuation vari-
able, say t̂p, that represents “returning a value to the next available
continuation” and to fill in the gaps in a marked stack. That way,
a stack can be converted into an environment by associating ev-
ery continuation with the variable t̂p, and every prompt with the
“empty” continuation kt̂p which just passes the value it receives to
the next continuation bound to t̂p in the environment:

kt̂p x γ = k x γ′ where (γ′, k, ) = γ(t̂p)

For example, we would have the following embedding of a stack:

[k3, p3, p2, k2, k1, p1]

= [t̂p 7→ k3, p3 7→ kt̂p, p2 7→ kt̂p, t̂p 7→ k2, t̂p 7→ k1, p1 7→ kt̂p]

Now we can achieve both operations on marked stacks just in terms
of the single variable lookup operation: send looks up t̂p and
passes a value along to the continuation it finds, thereby discard-
ing the prefix of non-t̂p prompts in the way, and split performs the
usual variable lookup on the chosen prompt, finding the two parti-
tions of the environment along with a trivial empty continuation.

send x γ = k x γ′ where (γ′, k, ) = γ(t̂p)

split p γ = (γ1, γ2) where (γ2, , γ1) = γ(p)

The analogy between marked stacks and dynamic environments
helps to explain the encoding of F α̂0 and #α̂

0 from Figure 2. First,
let’s begin with an abstract machine description of F α̂0 and #α̂

0 ,
similar to the semantics given by the Monadic Framework [6].
We’ll use the simplified configuration, 〈M,E,D〉, consisting of
a term M , an ordinary call-by-value λ-calculus evaluation context
E, and a marked stack of evaluation contexts and prompts D. The
two operators can then be described by the following transitions:4

〈#α̂
0 (M), E,D〉 〈M,�, D : E : α̂〉

〈F α̂0 V,E,D〉 〈V f,�, D2〉 where

(D2, D1) = split α̂ D

〈f V,E′, D′〉 〈V,E, (D′ : E′) ++D1〉

〈V,�, E : D〉 〈V,E,D〉
〈V,�, α̂ : D〉 〈V,�, D〉

4 Here, #α̂0 (M) behaves like pushPrompt α̂ M from the Monadic
Framework, and F α̂0 V is similar to withSubCont α̂ V that wraps up
the captured continuation into a call-by-value function that immediately in-
vokes it with pushSubCont.

E ::= � | E t | V E

D ::= � | E[#α̂
0 (D)]

Dα̂ ::= � | E[#β̂
0 (Dα̂)] where β̂ 6= α̂

D[E[(λx.M) V ]] 7→ D[E[M{V/x}]]

D[E[#α̂
0 (V )]] 7→ D[E[V ]]

D[E[#α̂
0 (D′

α̂[E′[F α̂0 V ]])]] 7→ D[E[V (λx.D′
α̂[E′[x]])]]

Figure 3. Call-by-value evaluation contexts and operational se-
mantics of the F α̂0 and #α̂

0 control operators.

By encoding the stack into a dynamic environment, we now get the
modified machine:

〈#α̂
0 (M), E,D〉 〈M, [t̂p]�, D[t̂p 7→ E][α̂ 7→ [t̂p]�]〉

〈F α̂0 V,E,D〉 〈V f, [t̂p]�, D2〉 where

(D2, [t̂p]�, D1) = D(α̂)

〈f V,E′, D′〉 〈V,E,D′[t̂p 7→ E′] ++D1〉

〈V, [t̂p]�, D〉 〈V,E,D′〉 where

(D′, E, ) = D(t̂p)

Notice that, like the encoding of #α̂
0 in Figure 2, the #α̂

0 (M)
operation binds t̂p to the current evaluation context and α̂ to the
“empty” context [t̂p]�, and then runs M in the empty context. The
F α̂0 operator looks up the binding of α̂ in the current environment
to create the continuation f , and when f is called it binds its calling
context to t̂p before further extending the environment. Again,
notice that in both the encoding of F α̂0 and the machine above, the
dynamic continuation variable that we look up is different from the
one that we use to bind the calling context of the created function.
Additionally, the steps which look for an evaluation context in the
stack have been replaced with a dynamic lookup of t̂p.

Using the encodings in Figure 2 and the semantics for the λµ̂0-
calculus [5], the derived operational semantics for control0 with
multiple prompt0s given in Figure 3 shows that the encodings give
the intended behavior. It’s important that the chosen t̂p dynamic
variable is never used as “prompt,” so that #t̂p

0 and F t̂p
0 are disal-

lowed. In other words, the chosen t̂p variable is hidden from the
view of the programmer. This way, any intermediate binding of t̂p
in a program is effectively invisible to every F α̂0 operation and can
be ignored, supporting the idea that the function created by F α̂0 re-
turns directly to its calling context without introducing a delimiter.
We can then restrict ourselves to two dynamic variables— an ar-
bitrary dynamic for creating prompt markers and the hidden t̂p for
returning values — to produce the single-prompt control operator.
With this restriction, the semantics in Figure 3 simplifies to the rule
for F0 and #0 in Figure 1.
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