
Sequent Calculus as a Compiler Intermediate Language

Paul Downen Luke Maurer
Zena M. Ariola

University of Oregon, USA
{pdownen,maurerl,ariola}@cs.uoregon.edu

Simon Peyton Jones
Microsoft Research Cambridge, UK

simonpj@microsoft.com

Abstract
The λ-calculus is popular as an intermediate language for practical
compilers. But in the world of logic it has a lesser-known twin,
born at the same time, called the sequent calculus. Perhaps that
would make for a good intermediate language, too? To explore
this question we designed Sequent Core, a practically-oriented core
calculus based on the sequent calculus, and used it to re-implement
a substantial chunk of the Glasgow Haskell Compiler.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Intermediate representations; Natural deduction; Se-
quent calculus; Compiler optimizations; Continuations; Haskell

1. Introduction
Steele and Sussman’s “Lambda the ultimate” papers [41, 42] per-
suasively argued that the λ-calculus is far more than a theoretical
model of computation: it is an incredibly expressive and practical
intermediate language for a compiler. The Rabbit compiler [40],
its successors (e.g. Orbit [21]), and Appel’s book “Compiling with
continuations” [1] all demonstrate the power and utility of the λ-
calculus as a compiler’s intermediate language.

The typed λ-calculus arises canonically as the term language
for a logic called natural deduction [14], using the Curry-Howard
isomorphism [45]: the pervasive connection between logic and
programming languages asserting that propositions are types and
proofs are programs. Indeed, for many people, the λ-calculus is the
living embodiment of Curry-Howard.

But natural deduction is not the only logic! Conspicuously,
natural deduction has a twin, born in the very same paper [14], called
the sequent calculus. Thanks to the Curry-Howard isomorphism,
terms of the sequent calculus can also be seen as a programming
language [9, 15, 44] with an emphasis on control flow.

This raises an obvious question: does the language of the sequent
calculus have merit as a practical compiler intermediate language,
in the same way that the λ-calculus does? What advantages and
disadvantages might it have, compared to the existing λ-based
technology? Curiously, we seem to be the first to address these

questions, and surprisingly the task was not as routine as we had
expected. Specifically, our contributions are these:

• We describe a typed sequent calculus called Sequent Core with
the same expressiveness as System Fω, including let, algebraic
data types, and case (Section 2).
The broad outline of the language is determined by the logic,
but we made numerous choices driven by its role as a compiler
intermediate representation (Section 2.2).
• Our language comes equipped with an operational semantics

(Section 2.3), a type system (Section 2.4), and standard meta-
theoretical properties. We also give direct-style translations to
and from System Fω (Section 3).1

• The proof of the pudding is in the eating. We have implemented
our intermediate language as a plugin2 for GHC, a state-of-
the-art optimizing compiler for Haskell (Section 4). GHC’s
intermediate language, called Core, is essentially System Fω;
our new plugin translates Core programs into Sequent Core,
optimizes them, and translates them back. Moreover, we have re-
implemented some of GHC’s Core-to-Core optimization passes,
notably the simplifier, to instead use Sequent Core.
• From the implementation, we found a way that Sequent Core

was qualitatively better than Core for optimization: the treatment
of join points. Specifically, join points in Sequent Core are
preserved during simplifications such as the ubiquitous case-
of-case transformation (Sections 4.2 and 4.3). Further, we show
how to recover the join points of Sequent Core programs, after
they are lost in translation, using a lightweight version of a
process known as contification [20] (Section 5).

So what kind of intermediate language do we get out of the sequent
calculus? It turns out that the language resembles continuation-
passing style, a common technique in the λ-calculus for representing
control flow inside a program. The division between assumptions
and conclusions in the logic gives us a divide between programs
that yield results and continuations that observe those results in
the language. Yet despite the surface similarity, Sequent Core is
still quite different from continuation-passing style (Section 6).
Perhaps most importantly, Sequent Core brings control flow and
continuations to a compiler like GHC without stepping on its toes,
allowing its extensive direct-style optimizations to still shine through.
In the end, we get an intermediate language that lies somewhere in
between direct and continuation-passing styles (Section 7), sharing
some advantages of both.

In a sense, many of the basic ideas we present here have been
re-discovered over the years as the tradition of Curry-Howard

1 More details of the meta-theory can be found in the appendix: http:
//ix.cs.uoregon.edu/~pdownen/publications/scfp_ext.pdf
2 Available at: http://github.com/lukemaurer/sequent-core

http://ix.cs.uoregon.edu/~pdownen/publications/scfp_ext.pdf
http://ix.cs.uoregon.edu/~pdownen/publications/scfp_ext.pdf
http://github.com/lukemaurer/sequent-core

Shared syntax of kinds and types

a, b, c ∈ TyVar ::= . . .

κ ∈ Kind ::= ? | κ→ κ

τ, σ ∈ Type ::= a | T | σ τ | σ → τ | ∀a:κ.τ | ∃ # »a:κ.(#»τ)

Syntax of Sequent Core

x, y, z ∈ V ar ::= . . . j ∈ Label ::= . . .

pgm ∈ Program ::=
»

bind

bind ∈ Bind ::= bp | rec
{

»

bp
}

bp ∈ BindPair ::= x:τ = v | j:τ = µ̃[# »a:κ, # »x:σ].c

v ∈ Term ::= λx:τ .v | Λa:κ.v | x | K (#»σ , #»v) | µret.c
c ∈ Command ::= let bind in c | 〈v || k〉 | jump j #»σ #»v

k ∈ Kont ::= v · k | τ · k | case of # »

alt | ret
alt ∈ Alternative ::= x:τ → c | K (# »a:κ, # »x:τ)→ c

Syntax of Core

x, y, z ∈ V ar ::= . . .

pgm ∈ Program ::=
»

bind

bind ∈ Bind ::= bp | rec
{

»

bp
}

bp ∈ BindPair ::= x:τ = v

e ∈ Expression ::= let bind in e

| λx:τ .e | Λa:κ.e | x | K #»σ #»e

| e e | e τ | case eof # »

alt

alt ∈ Alternative ::= x:τ → e | K # »a:κ # »x:τ → e

Figure 1. Syntax

dictates [45]: first by a logician and later by computer scientists.
Our goal is to put them together in a way that is useful for compilers.
Our implementation demonstrates that Sequent Core is certainly up
to the job: in short order, we achieved performance competitive with
a highly mature optimizing compiler. While we are not ready to
recommend that GHC change its intermediate language, we instead
see Sequent Core as an illuminating new design point in the space of
functional programming languages and laboratory for experiments
on intermediate representation techniques. We hope that our work
will bring the sequent calculus forth, Cinderella-like, out of the
theory kitchen and into the arms of compiler writers.

2. Sequent Core
In this section we present the specifics of our new sequent-style
intermediate language for functional programs, along with its type
system and operational semantics. The language that comes out of
the logic “for free” is more expressive [11] than the pure λ-calculus,
since it naturally speaks of control flow as a first-class entity. Thus,
our task is to find the sweet spot between the permission to express
interesting control flow and the restriction to pure functions.

2.1 Overview
Figure 1 gives the syntax of Sequent Core. For comparison pur-
poses, we also give the syntax of Core, GHC’s current intermediate
language [38]. Both languages share the same syntax of types and
kinds, also given in Figure 1. We omit two important features of

Core, namely casts and unboxed types; both are readily accommo-
dated in Sequent Core, and our implementation does so, but they
distract from our main point.

Here is a small program written in both representations:

Core
plusOne : Int → Int = λx:Int .(+) x 1

Sequent Core
plusOne : Int → Int = λx:Int .µret. 〈(+) ||x · 1 · ret〉

Referring to Figure 1, we see that

• Just as in Core, a Sequent Core program is a set of top-level
bindings; bindings can be non-recursive or (mutually) recursive.
• A binding in Sequent Core is either a value binding x:τ = v,

or a continuation binding j:τ = µ̃[# »a:κ, # »x:τ].c.3 We discuss the
latter in Section 2.2.2.
• The right-hand side of a value binding is a term v, which begins

with zero or more lambdas followed by a variable, a constructor
application, or a computation µret.c.
• The computation term µret.c, where c is a command, means

“run command c and return whatever is passed to ret as the result
of this term.”
• All the interesting work gets done by commands. A command
c is a collection of local bindings, wrapping either a cut pair
〈v || k〉 or a jump. We discuss jumps in Section 2.2.2.
• Finally, cut pairs do some real computation. They are pairs
〈v || k〉 of a term v and a continuation k. A continuation k is
a call stack containing a sequence of applications (to types or
terms) ending with either a case analysis or a return to ret.

In plusOne as written in Sequent Core above, the calculation of the
function is carried out by the command in its body: the term is the
function (+), while the continuation is x ·1 · ret, meaning “apply to
x, then apply to 1, then return.” With this reading, Sequent Core cut
pairs closely resemble the states of many abstract machines (e.g., the
CEK machine [12]), with a term v in the focus and a continuation
or call stack k that describes how it is consumed.

Here is another example program, written in both representations,
that drops the last element of a list:

Core
init : ∀a.[a]→ [a]
= Λa.λx:[a]. case reverse a xs of

[] → []
(y : ys) → reverse a xs

Sequent Core
init : ∀a.[a]→ [a]
= Λa.λx:[a].µret. 〈reverse||a · xs · case of

[] → []
(y : ys) → 〈reverse || a · ys · ret〉

As before, the outer structure is the same, but the case, which is
so prominent in Core, appears in Sequent Core as the continuation
of the call to reverse. Indeed, this highlights a key difference: in
Sequent Core, the focus of evaluation is always “at the top”, whereas
in Core it may be deeply buried [4]. In this example, the call to
reverse is the first thing to happen, and it is visibly at the top of
the body of the lambda. In this way, Sequent Core’s operational
reading is somewhat more direct, a useful property for a compiler
intermediate language.

3 We occasionally omit type annotations in examples for clarity.

2.2 The Language
Having seen how Sequent Core is a language resembling an abstract
machine, let’s look more closely at the new linguistic concepts that
it introduces and how Sequent Core compares to Core. On closer
inspection, Sequent Core can be seen as a nuanced variation on
Core, separating the roles of distinct concepts of Core syntactically
as part of the effort to split calculations across the two sides of a cut
pair. More specifically, each construct of Core has an exact analogue
in Sequent Core, but the single grammar of Core expressions e is
divided among terms v, continuations k, and commands c in Sequent
Core. Additionally, Sequent Core has special support for labels and
direct jumps, which are not found in Core.

2.2.1 Terms and Continuations
Core expressions e, as shown in Figure 1, include a variety of
values (more specifically weak-head normal forms) which require
no further evaluation: lambdas (both small λ and big Λ) and
applied constructors. Along with variables, these are all terms in
Sequent Core, as they do not involve any work to be done and they
immediately produce themselves as their result.

On the other hand, Core also includes expressions which do
require evaluation: function applications e e′, polymorphic instan-
tiations e τ , and case expressions. Each of these expressions uses
something to create the next result, and thus these are reflected as
continuations k in Sequent Core. As usual, Sequent Core contin-
uations represent evaluation contexts that receive an input which
will be used immediately. For example, the application context � 1,
where “�” is the hole where the input is placed, corresponds to the
call stack 1 · ret. Furthermore, we can apply the curried function
λx.λy.x to the arguments 1 and 2 by running it in concert with the
stack 1 · 2 · ret, as in:

〈λx.λy.x || 1 · 2 · ret〉 = 〈λy.1 || 2 · ret〉 = 〈1 || ret〉

where ret signals a stop, so that the result 1 can be returned.
Since we are interested in modeling lazy functional languages,

we also need to include the results of arbitrary deferred computations
as terms in themselves. For example, when we perform the lazy
function composition f (g x) in Core, g x is only computed when
f demands it. This means we need the ability to inject computations
into terms, which we achieve with µ-abstractions. A µ-abstraction
extracts a result from a command by binding the occurrences of ret
in that command, so that anything passed to ret is returned from
the µ-abstraction. However, because we are only modeling purely
functional programs, there is only ever one ret available at a time,
making it a rather limited namespace. Thus, µret. 〈g ||x · ret〉 runs
the underlying command, calling the function g with the argument
x, so that whatever is returned by g pops out as the result of the
term. So lazy function composition can be written in Sequent Core
as 〈f || (µret. 〈g ||x · ret〉) · ret〉.

Notice that every closed command must give a result to ret if it
ever stops at all. Another way of looking at this fact is that every
(finite) continuation has ret “in the tail”; it plays the role of “nil”
in a linked list. However, the return structure of continuations is
more complex than a plain linked list, since the terminating ret
of a continuation may occur in several places. By inspection, a
continuation is a sequence of zero or more type or term applications,
followed by either ret itself or by a case continuation. But in the
latter case, each alternative has a command whose continuation must
in turn have ret in the tail. Unfortunately, this analogy breaks down
in the presence of local bindings, as we will see. Luckily, however,
viewing ret as a static variable bound by µ-abstractions tells us
exactly how to “chase the tail” of a continuation by following the
normal rules of static scope. So we may still say that every closed
computation 〈v || k〉 eventually returns if it does not diverge.

2.2.2 Bindings and Jumps
There is one remaining Core expression to be sorted into the Sequent
Core grammar: let bindings. In Sequent Core, let bindings are
commands, as they set up an enclosing environment for another
command to run in, forming an executable code block. In both
representations, let bindings serve two purposes: to give a shared
name to the result of some computation, and to express (mutual)
recursion. Thus in the Sequent Core command c, we can share
the results of terms through letx = v in c and we can share a
continuation through 〈µret.c || k〉. But something is missing. How
can we give a shared label to a command (i.e., to a block of code)
that we can go to during the execution of another command? This
facility is critical for maintaining small code size, so that we are not
forced to repeat the same command verbatim in a program.

For example, suppose we have the command

〈z || case of Left(x)→ c,Right(x)→ c〉
wherein the same c is repeated twice due to the case continuation.
Now, how do we lift out and give a name to c, given that it contains
the free variable x? We would rather not use a lambda, as in
λx.µret.c, since that introduces additional overhead compared to
the original command. Instead, we would rather think of c as a sort
of continuation whose input is named x during execution of c. In
the syntax of λµµ̃ [9], this would be written as µ̃x.c, the dual of
µ-abstractions. However, this is not like the other continuations we
have seen so far! There is no guarantee that µ̃x.c uses its input
immediately, or even at all. Thus, we are not dealing with an
evaluation context, but rather an arbitrary context. Furthermore,
we might (reasonably) want to name commands with multiple
free variables, or even free type variables. So in actuality, we are
looking for a representation of continuations taking multiple values
as inputs of polymorphic types, corresponding to general contexts
with multiple holes.

This need leads us to multiple-input continuations, which we
write as µ̃[a1, . . . , an, x1, . . . , xm].c in the style of λµµ̃. These con-
tinuations accept several inputs (named x1 . . . xm), whose types are
polymorphic over the choice of types for a1 . . . an, in order to run a
command c. Intuitively, we may also think of these multiple-input
continuations as a sequence of lambdas Λa1 . . . an.λx1 . . . xm.c,
except that the body is a command because it does not return.
The purpose of introducing multiple-input continuations was to
lift out and name arbitrary commands, and so they appear as a Se-
quent Core binding. Specifically, all multiple-input continuations
in Sequent Core are given a label j, as in the continuation binding
j = µ̃[x, y]. 〈(+) ||x · y · ret〉. These labeled continuations serve
as join points: places where the control flow of several diverging
branches of a program joins back up again.

In order to invoke a bound continuation, we can jump to it by
providing the correct number of terms for the inputs, as well as
explicitly specifying the instantiation of any polymorphic type in
System Fω style. For example, the command

let j = µ̃[a:?, x:a, f :a→ Bool]. 〈f ||x · ret〉
in jump j Bool True not

will jump to the label j with the inputs Bool , True, and not ,
which results in 〈not ||True · ret〉. So when viewing Sequent Core
from the perspective of an abstract machine, its command language
provides three instructions: (1) set a binding with let, (2) evaluate
an expression with a cut pair, or (3) perform a direct jump.

Take note that a labeled continuation does not introduce a µ-
binder. As a consequence, the ret found in j = µ̃[x, y]. 〈(+) ||x · y · ret〉
refers to the nearest surrounding µ, unlike the ret found in
f = λx.λy.µret. 〈(+) ||x · y · ret〉. Viewing ret as a statically
bound variable means that labeled continuations participate in the
“tail chasing” discussed previously in Section 2.2.1. Thus, the ret

structure of commands and continuations treats labeled continua-
tions quite the same as case alternatives for free.

2.2.3 The Scope of Labels
There is one major restriction that we enforce to ensure that each
term must have a unique exit point by which it returns its result,
and so evaluating a term cannot cause an observable jump to some
surrounding continuation binding. The intuition is:

Terms contain no free references to continuation variables,

where continuation variables can be labels j as well as ret. This
restriction, similar to a restriction on CPS [20], makes sure that
lambdas cannot close over labels available from their contexts,
so that labels do not escape through returned lambdas. Thus, all
jumps within the body of a lambda must be local. Likewise, in all
computations µret.c, the underlying command c has precisely one
unique exit point from which the computation can return a result,
denoted by ret. Therefore, all jumps made during the execution of c
are internal to c, and unobservable during evaluation of µret.c.

Notice that this restriction on the scope of continuation variables,
while not very complex, still manages to tell us something about
the expressive capabilities of Sequent Core. For example, we
syntactically permit value and continuation bindings within the
same recursive block, but can they mutually call one another? It
turns out that the scoping restriction disallows any sort of interesting
mutual recursion between terms and continuations, because terms
are prevented from referencing labels within their surrounding (or
same) binding environment. Specifically, there is some additional
structure implicit to let bindings:

• Continuation bindings can reference value bindings and other
continuation bindings, but value bindings can only reference
other value bindings.
• In any sequence of bindings, all value bindings can always be

placed before all continuation bindings.
• Value and continuation bindings cannot be mutually recursive.

Any minimal, mutually recursive rec
{

»

bp
}

block will consist
of only value bindings or only continuation bindings.

For example, consider the recursive bindings:

rec {f = λx.v, j = µ̃[y].c}
By the scoping rules, j may call f through c, but f cannot jump
back to j in v because λx.v cannot contain a free reference to j.
Therefore, since there is no true mutual recursion between f and j,
we can break the recursive bindings into two separate blocks with
the correct scope, placing the binding for f first:

rec {f = λx.v} , rec {j = µ̃[y].c}
While we do not syntactically enforce this separation, doing so
would not cause any loss of expressiveness. Indeed, we could
normalize all commands by gathering and partitioning all bindings
into (1) first, the list of value bindings, Γ, and (2) second, the
list of continuation bindings, ∆, so that commands have the form
letΓ in let∆ in 〈v || k〉. However, we do not enforce this normal
form in Sequent Core.

2.3 Operational Semantics
A useful way to understand Sequent Core is through its operational
semantics, given in Figure 2, which provides a high-level specifica-
tion for reasoning about the correctness of program transformations.
The rules for lambda (both small λ and big Λ) are self-explanatory.
The rules for case are disambiguated by selecting the first match, so
the order of alternatives matters. For a non-recursive let, we simply
substitute, thus implementing call-by-name; implementing recursive

W ∈WHNF ::= λx:τ .v | Λa:κ.v | x | K (#»σ , #»v)〈
λx:τ .v

∣∣∣∣ v′ · k〉 7→ 〈
v
{
v′/x

} ∣∣∣∣ k〉
〈Λa:κ.v || τ · k〉 7→ 〈v {τ/a} || k〉〈

K (#»σ , #»v)
∣∣∣∣∣∣ case of # »

alt
〉
7→ c

»

{σ/b}
»

{v/x} K (
»
b:κ, # »x:τ)→ c ∈ # »

alt〈
W
∣∣∣∣∣∣ case of # »

alt
〉
7→ c {W/x} x:τ → c ∈ # »

alt

〈µret.c || k〉 7→ c {k/ret}
letx:τ = v in c 7→ c {v/x}

let j:τ ′= µ̃[# »a:κ, # »x:τ].c′in c 7→ c
{
c′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

Figure 2. Call-by-name operational semantics

let is only slightly harder, but we omit it here for simplicity. Note
that the rule for continuation lets uses structural substitution [2, 28],
which replaces every command matching the pattern jump j #»σ #»v
with the given command. Intuitively, we can think of this substi-
tution as inlining the right-hand side for j everywhere, and then
β-reducing the jump at each inline site.

Note that Figure 2 serves equally well as an abstract machine,
since every rule applies to the top of a command without having to
search for a redex. Figure 2 can also be extended to a reduction the-
ory for Sequent Core by permitting the rules to apply in any context,
and further to an equational theory by symmetry, thereby providing
a specification for valid transformations that a compiler might apply.
Thus, a call-by-name operational semantics and an abstract machine
are the same for Sequent Core, and the difference between a reduc-
tion and an equational theory is the difference between reducing
anywhere or reducing only at the top of a command.

The most interesting rule is the one for computations:

〈µret.c || k〉 7→ c {k/ret}
If the computation µret.c is consumed by continuation k, then we
can just substitute k for all the occurrences of ret in c. From the
point of view of a control calculus or continuation-passing style, ret
can be seen as a static variable bound by µ-abstractions, providing
the correct notion of substitution. Another way to think about it
is that the substitution c {k/ret} appends k to the continuation(s)
of c, including those in labeled continuations but not under any
intervening µ-abstractions. For example:

〈f ||x · (µret.c) · ret〉 {y · ret/ret} = 〈f ||x · (µret.c) · y · ret〉
Expressing call-by-need simply requires the addition of a

Launchbury-style [22] heap, as shown in Figure 3, which gives
a lower-level operational reading of the different language con-
structs and shows how Sequent Core can be efficiently implemented.
Note that unless otherwise specified in the rules, all additions to the
heapH and jump environment J are assumed to be fresh, using α-
renaming as necessary to pick a fresh variable or label. Specifically,
the force and update rules modify an existing binding in the heap,
whereas all the other rules allocate new heap bindings. Also note
that for simplicity of the let rules, we assume that value bindings,
bindv , are kept separate from continuation bindings, bindk, which
can always be done as described in Section 2.2.3.

The main thing to notice about this semantics is how the different
components of the state are separated—the heap H, the jump
environment J , and the linear continuation R—which is only
possible because of our scope restrictions described in Section 2.2.3.
Specifically, every rule that allocates in the heap uses the fact that
terms cannot access the labels in the jump environment, and the µ
and force rules use the fact that a µ-abstraction starts a fresh scope
of labels. The scoping rules further allow these different components

V ∈ Value ::= λx:τ .v | Λa:κ.v | x | K (#»σ ,
#»
V) W ∈WHNF ::= V | K (#»σ , #»v)

H ∈ Heap ::= ε | Γ, x = v | Γ, x = • J ∈ JumpEnv ::= ε | J , j = µ̃[# »a:κ # »x:τ].c R ∈ LinKont ::= ε | (k,J) : R | updx : R

〈Γ; J ,R; c〉 〈Γ; J ,R; c〉

(β→) 〈H; J ,R; 〈λx:τ .v1 || v2 · k〉〉 〈H, x = v2; J ,R; 〈v1 || k〉〉

(β∀) 〈H; J ,R; 〈Λa:κ.v || τ · k〉〉 〈H; J ,R; 〈v {τ/a} || k〉〉

(casecons) 〈H; J ,R;
〈
K (#»σ , #»v)

∣∣∣∣∣∣ case of # »
alt
〉
〉 〈H, # »x = v ; J ,R; c

»

{σ/a}〉 K (# »a:κ, # »x:τ)→ c ∈ # »
alt

(casedef) 〈H; J ,R;
〈
W
∣∣∣∣∣∣ case of # »

alt
〉
〉 〈H, x = W ; J ,R; c〉 x→ c ∈ # »

alt

(µ) 〈H; J ,R; 〈µret.c || k〉〉 〈H; ε, (k,J) : R; c〉

(jump) 〈H; J ,R; jump j #»σ #»v 〉 〈H, # »x = v ; J ,R; c
»

{σ/a}〉 j = µ̃[# »a:κ, # »x:τ].c ∈ J
(lookup) 〈H; J ,R; 〈x || k〉〉 〈H; J ,R; 〈V || k〉〉 x = V ∈ H

(lazysubst) 〈H; J ,R; 〈x || k〉〉 〈H, # »y = v, x = K (#»σ , #»y); J ,R; 〈K (#»σ , #»y) || k〉〉 x = K (#»σ , #»v) ∈ H
(force) 〈H; J ,R; 〈x || k〉〉 〈H, x = •; ε,updx : (k,J) : R; c〉 x = µret.c ∈ H

(update) 〈H; J ,updx : R; 〈W || ret〉〉 〈H, x = W ; J ,R; 〈W || ret〉〉 x = • ∈ H
(ret) 〈H; J , (k′,J ′) : R; 〈W || ret〉〉 〈H; J ′,R; 〈W || k′〉〉

(letval) 〈H; J ,R; let bindv in c〉 〈H, bindv ; J ,R; c〉 Dom(H) ∩Dom(bindv) = ∅
(letcont) 〈H; J ,R; let bindk in c〉 〈H; J , bindk,R; c〉 Dom(J) ∩Dom(bindk) = ∅

Figure 3. Call-by-need operational semantics

to embody different commonplace run-time entities. The heapH is
of course implemented with a random-access mutable heap as usual.
The linear continuationR is a mutable stack, since each element is
accessed exactly once before disappearing. Contrastingly, the jump
environment J serves only as syntactic bookkeeping for statically
allocated code. Because of the scope restrictions, the binding for
each label can be determined before execution, which is evident from
the fact the letcont side condition is guaranteed to hold whenever
the initial program has distinct let-bound labels, making dynamic
allocation unnecessary. So during execution the jump rule is a direct
jump and the letcont rule is nothing at all!

Even though the operational semantics of Figure 2 and Figure 3
implement different evaluation strategies—call-by-name and call-
by-need, respectively—the two still produce the same answers.
In particular, the abstract machine terminates if and only if the
operational semantics does, which is enough to guarantee that the
two semantics agree [24, 33].

Proposition 1 (Termination equivalence). For any closed command
c, c 7→? c1 67→ if and only if 〈ε; ε, ε; c〉 ? 〈H; J ,R; c2〉 6 .

This should not be a surprise, as Sequent Core is intended for
representing pure functional programs, and for the pure λ-calculus
the two evaluation strategies agree [3].

2.4 Type System
Another way to understand Sequent Core is through its type system,
which is given in Figure 4. Unsurprisingly, the type system for
Sequent Core is based on the sequent calculus by reflecting programs
as right rules and continuations as left rules. In particular, it is an
extension (as well as a restriction) of the type system for the λµµ̃-
calculus [9, 16], and likewise we share the same unconventional
notation for typing judgements to maintain a visible connection with
the sequent calculus. More specifically, the typing judgements for
the different syntactic categories of Sequent Core are written with
the following sequents:

• The type of a command is described by c : (Γ ` ∆), which says
that c is a well-typed command and may contain free variables
described by Γ and ∆. Note that the command itself does not

have a type directly, as terms and continuations do, because it
does not take input or produce output directly. Rather, the “return”
type of a command is in ∆, as in 〈1 || ret〉 : (ε ` ret : Int).
• The type of a term is described by Γ ` v : τ , which has the usual

reading for typing terms of System Fω. In particular, it says that
v returns a result of type τ and may contain free variables (for
either values or types) with the types described by Γ.
• The type of a continuation is described by Γ | k : τ ` ∆, which

says that k consumes an input of type τ and may contain free
variables with the types described by Γ and ∆.
• The type of a binding is described by bind : (Γ | ∆′ ` Γ′ | ∆),

which is the most complex form of sequent. In essence, it says
that bind binds the variables in Γ′ and ∆′ and may contain
references to free variables from Γ and ∆. For example, we have
(x:Int = z + 1) : (z : Int | ε ` x : Int | ret : Bool) and
(j:Int = µ̃[x:Int]. 〈x || ret〉) : (ε | j : Int ` ε | ret : Int).

One important detail to note is the careful treatment of the con-
tinuation environment ∆ in the rules of Figure 4. In particular, the
term-typing judgement is missing ∆, which enforces the scoping
restriction of continuation variables discussed in Section 2.2.3. A
consequence of this fact is that ∆ is treated linearly in the type
system; it is only duplicated across the multiple alternatives of a
case or in continuation bindings. Type variables in the environment
(Γ, a : κ,Γ′) additionally scope over the remainder of the environ-
ment (Γ′) as well as the entire conclusion (either ∆ or v : τ) and
obey static scoping rules. Thus, the ∀R, TL, and Label rules only
apply if they do not violate the static scopes of type variables.

The unusual notation we used for the type system makes it easy
to bridge the gap between Sequent Core and the sequent calculus. In
particular, if we drop all expressions (commands, etc.) and vertical
bars from Figure 4, we end up with a corresponding logic of the
sequent calculus, as shown in Figure 5 (where the type kinding is
identical to Figure 4). All the similarly named rules come directly
from erasing extra information from Figure 4, and additionally
Ax represents both Var and Ret, MultiCut represents Let, WR
represents Name, and the rest of the typing rules do nothing in

Γ ∈ Environment ::= ε | Γ, x : τ | Γ, a : κ | Γ,K : τ | Γ,T : κ ∆ ∈ CoEnvironment ::= ε | ret : τ | ∆, j : τ

Type kinding: Γ ` τ : κ

Γ, a : κ ` a : κ
TyVar

Γ, T : κ ` T : κ
TyCon

Γ ` σ : κ′ → κ Γ ` τ : κ′

Γ ` σ τ : κ
TyApp

Γ, a : κ ` τ : ?

Γ ` ∀a:κ.τ : ?
∀

»
Γ, # »a : κ ` τ : ?

Γ ` ∃ # »a:κ.(#»τ) : ?
∃×

Command typing: c : (Γ ` ∆)

bind : (Γ | ∆′ ` Γ′ | ∆) c : (Γ,Γ′ ` ∆′,∆)

let bind in c : (Γ ` ∆)
Let

Γ ` v : τ Γ | k : τ ` ∆

〈v || k〉 : (Γ ` ∆)
Cut

»
Γ ` σ : κ

»

Γ ` v : τ
»

{σ/a}
jump j #»σ #»v : (Γ ` j : ∃ # »a:κ.(#»τ),∆)

Jump

Term typing: Γ ` v : τ

Γ, x : τ ` x : τ
Var

c : (Γ ` ret : τ)

Γ ` µret.c : τ
Act

Γ, x : σ ` v : τ

Γ ` λx:σ.v : σ → τ
→R

Γ, a : κ ` v : τ

Γ ` Λa:κ.v : ∀a:κ.τ
∀R

K : ∀ # »a:κ.∀
»

b:κ′ .
#»

τ ′ → T #»a ∈ Γ
»

Γ ` σ : κ′
»

Γ ` v : τ ′
»

{τ/a}
»

{σ/b}
Γ ` K (#»σ , #»v) : T #»τ

TRK

Continuation typing: Γ | k : τ ` ∆ and Alternative typing: Γ | alt : τ ` ∆

Γ | ret : τ ` ret : τ,∆
Ret

Γ ` v : σ Γ | k : τ ` ∆

Γ | v · k : σ → τ ` ∆
→L

Γ ` σ : κ Γ | k : τ {σ/a} ` ∆

Γ | σ · k : ∀a:κ.τ ` ∆
∀L

»

Γ | alt : τ ` ∆

Γ | case of # »
alt : τ ` ∆

Case

c : (Γ, x : τ ` ∆)

Γ | x:τ → c : τ ` ∆
Deflt

K : ∀
»

a:κ′ .∀ # »
b:κ. #»σ → T #»a ∈ Γ c : (Γ,

»
b : κ,

»

x : σ
»

{τ/a} ` ∆)

Γ | K (
»
b:κ, # »x:σ)→ c : T #»τ ` ∆

TLK

Binding typing: bind : (Γ | ∆′ ` Γ′ | ∆) and bp : (Γ | ∆′ ` Γ′ | ∆)

Γ ` v : τ

(x:τ = v) : (Γ | ε ` x : τ | ∆)
Name

c : (Γ, # »a : κ, # »x : τ ` ∆)

(j:∃ # »a:κ.(#»τ) = µ̃[# »a:κ, # »x:τ].c) : (Γ | j : ∃ # »a:κ.(#»τ) ` ε | ∆)
Label

Γ′ =
»

Γ′′ ∆′ =
»

∆′′ # »

bp : (Γ,Γ′ | ∆′′ ` Γ′′ | ∆′,∆)

rec
{

»
bp
}

: (Γ | ∆′ ` Γ′ | ∆)
Rec

Figure 4. Type System

Γ ∈ Assumption ::= ε | Γ, τ | Γ,K : τ | Γ, a : κ | Γ, T : κ ∆ ∈ Conclusion ::= ε | ∆, τ
Structural rules:

Γ, τ ` τ,∆ Ax
Γ ` τ Γ, τ ` ∆

Γ ` ∆
Cut

Γ,∆′ ` Γ′,∆ Γ,Γ′ ` ∆′,∆

Γ ` ∆
MultiCut

Γ ` τ
Γ ` τ,∆ WR

»
Γ, τ ` ∆

Γ, τ ` ∆
Case

Γ′ =
»

Γ′′ ∆′ =
»

∆′′ # »

Γ,Γ′,∆′′ ` Γ′′,∆′,∆

Γ,∆′ ` Γ′,∆
Rec

Logical rules:

Γ, σ ` τ
Γ ` σ → τ

→R
Γ ` σ Γ, τ ` ∆

Γ, σ → τ ` ∆
→L

Γ, a : κ ` τ
Γ ` ∀a:κ.τ

∀R
Γ ` σ : κ Γ, τ {σ/a} ` ∆

Γ, ∀a:κ.τ ` ∆
∀L

»
Γ ` σ : κ

»

Γ ` τ
»

{σ/a}
Γ ` ∃ # »a:κ.(#»τ),∆

Jump
Γ, # »a : κ, #»τ ` ∆

Γ,∃ # »a:κ.(#»τ) ` ∆
Label

K : ∀ # »a:κ.∀
»

b:κ′ .
#»

τ ′ → T #»a ∈ Γ
»

Γ ` σ : κ′
»

Γ ` τ ′
»

{τ/a}
»

{σ/b}
Γ ` T #»τ

TRK
K : ∀ # »a:κ.∀

»

b:κ′ . #»σ → T #»a ∈ Γ Γ,
»

b : κ′ ,
»

σ
»

{τ/a} ` ∆

Γ, T #»τ ` ∆
TLK

Figure 5. Logical interpretation

the logic. This logic resembles Gentzen’s original sequent calculus
LK [14], but there are still some differences—besides just choice of
connectives for types and kinds—that come from its application as
an intermediate language for functional programs:

• LK has explicit inference rules for the structural properties of
sequents: weakening (adding extraneous assumptions or con-
clusions), contraction (merging duplicate assumptions or con-
clusions), and exchange (swapping two assumptions or conclu-
sions). Instead, the logic of Sequent Core makes these properties
(except for weakening on the right, WR) implicit by generalizing
the initial Ax rule to allow for extraneous assumptions and con-
clusions, and by duplicating the assumptions and conclusions in
rules like Cut, MultiCut, and→L. This comes from the interpre-
tation of static variables in the language as side assumptions and
side conclusions. However, implicit and explicit presentations
of structural properties are logically equivalent to one another.
• LK is a classical logic, which is achieved by allowing for any

number of extra side conclusions in all the left (L) and right
(R) rules. Contrarily, Gentzen’s also introduced an intuitionistic
logic LJ [14] as a variant of LK that just limits all rules to only
allow exactly one conclusion at all times. Instead, the logic that
comes out of Sequent Core lies in between these two systems:
sometimes there can only be one conclusion, and sometimes
there can be many. Furthermore, it happens that the well-typed
terms of Sequent Core correspond to well-typed expressions of
Core (see Theorem 4 in the following Section 3), so Sequent
Core still captures a similar notion of purity from the λ-calculus.
This demonstrates that there is room for more subtle variations
on intuitionistic logic that lie between the freedom of LK and
the purity of LJ.
• Unlike LK, Figure 5 is not logically consistent as is, correspond-

ing to the fact that the presented type system for Sequent Core
allows for non-terminating programs and does not force exhaus-
tiveness of case analysis. In particular, the Rec rule can prove
anything and would of course be left out of a consistent subset
of the logic. Similarly, the Case and TLK rules should only be
used to build proofs by exhaustive case analysis at a type, as in
the (informally) derived TL rule:

∀K : ∀ # »a : κ.∀
»

b : κ′ . #»σ → T #»τ .

Γ,
»

b : κ′ ,
»

σ
»

{τ/a} ` ∆

Γ, T #»τ ` ∆
TLK

Γ, T #»τ ` ∆
Case

So a consistent subset of Figure 5 is attainable by further
restricting the rules and the types along these lines.4

Perhaps the most complex rules in Figure 4 are Jump and Label
for multiple-input continuations. It may seem a bit bizarre that the
polymorphism is pronounced “exists” instead of “forall,” but luckily
the above Curry-Howard reading in Figure 5 helps explain what’s
going on. There are two instances of the Jump and Label rules
that are helpful to consider. The first is when we have exactly two
monomorphic inputs:

Γ ` τ1 Γ ` τ2
Γ ` (τ1, τ2)

Jump
Γ, τ1, τ2 ` ∆

Γ, (τ1, τ2) ` ∆
Label

4 Besides removing Rec and merging Case with TLK, both recursive types
(implicitly available from assumptions K : τ) and the MultiCut would also
need to be restricted for consistency. Interestingly, the Γ-∆ partitioning of
let bindings described in Section 2.2.3 provides a sufficient consistency
criterion for MultiCut. So maintaining the distinction between active
conclusions (i.e., terms) and assumptions (i.e., continuations) as presented in
Figure 4 in the logic is enough to tame MultiCut.

These are the right and left rules for the (tensor) product type in the
sequent calculus—the right Jump rule allows only one conclusion
like LJ and the left Label rule allows multiple conclusions like LK—
illustrating the (tuple) product nature of multiple-input continuations
and jumps. Second is when we have one polymorphic type quantified
over one input:

Γ ` σ : κ Γ ` τ {σ/a}
Γ ` ∃a:κ.τ

Jump
Γ, a : κ, τ ` ∆

Γ, ∃a:κ.τ ` ∆
Label

These are exactly the right and left rules for existential types in
the sequent calculus—with the same comparison to the right rule
of LJ and the left rule of LK—which justifies the use of ∃ for
the types of labels and jumps. Notice that this special case giving
existential quantification is formally dual5 to the rules ∀L and ∀R for
universal quantification by transporting conclusions on the right of
the turnstile (`) to the left and vice versa (except for the quantified
σ and a, which stay put).

Furthermore, notice that the static scope of type variables uni-
formly gives the correct logical provisos for the quantifiers in the
∀R, Label, and TLK rules. For example, the following command
from Section 2.2.2

let j:∃a:?.(a, a→Bool) = µ̃[a:?, x:a, f :a→Bool]. 〈f ||x · ret〉
in jump j Bool True not

is typable by the sequent (ε ` ret : Bool) because the type of
the free variable ret does not reference the locally quantified a.
However, the seemingly similar command

let j:∃a:?.(a, a→a) = µ̃[a:?, x:a, f :a→a]. 〈f ||x · ret〉
in jump j Bool True not

is not typable by the sequent (ε ` ret : a)—or any other one—
because a is local to the definition of j, and thus cannot escape in
the type of ret. Pattern matching on existential data types in Haskell
follows restrictions that are analogous to these scoping rules.

Finally, observe that the type system of Figure 4 is enough to
ensure that well-typed programs don’t go wrong according to the
operational semantics of Figure 2. In particular, type safety follows
from standard lemmas for progress (every well-typed command
is either a final state or can take a step) and preservation (every
well-typed command is still well-typed after taking a step).

Proposition 2 (Type safety). 1. Progress: If c : (ε ` ret : τ)
without Rec, then c 7→ c′ or c has one of the following
forms: 〈W || ret〉 or

〈
K (#»σ , #»v)

∣∣∣∣∣∣ case of # »

alt
〉

where neither

K (
»

b:κ, # »x:σ)→ c nor x : τ → c are in
»

alt .
2. Preservation: If c : (Γ ` ∆) and c 7→ c′ then c′ : (Γ ` ∆).

Note that an unknown case is a possibility allowed by the type
system as is, and just like with Core, ensuring exhaustiveness of
case analysis rules this final state out so that the only result is
〈W || ret〉. Also, because Figure 2 does not account for recursive
lets, neither does the above progress proposition. Recursion is not
a problem for progress, but it does take some additional care to treat
explicitly.

3. Translating to and from Core
Core and Sequent Core are equally expressive, and it is illuminating
to give translations between them, in both directions. In practical
terms these translations were useful in our implementation, because
in order to fit Sequent Core into the compiler pipeline, we need to
translate from Core to Sequent Core and back.

5 The Jump and Label are not exactly dual to ∀L and ∀R in the classical
sense due to the restriction of right rules to only one conclusion. Lifting this
restriction to get the more LK-like logic makes these rules classically dual.

S Jλx:τ .eK = λx:τ .S JeK S JxK = x

S JΛa:κ.eK = Λa:κ.S JeK S JK #»σ #»e K = K (#»σ ,
»

S JeK)

S Jlet bind in eK = µret. letS JbindK in
〈
S JeK

∣∣∣∣ ret
〉

S
q
e e′

y
= µret.

〈
S JeK

∣∣∣∣S q
e′

y
· ret

〉
S Je τK = µret.

〈
S JeK

∣∣∣∣ τ · ret
〉

S
r
case eof

»
alt

z
= µret.

〈
S JeK

∣∣∣∣∣∣ case of # »

S JaltK
〉

S Jx:τ = eK = x:τ = S JeK

S Jrec { # »x:τ = e}K = rec
{

»

x:τ = S JeK
}

S Jx:τ → eK = x:τ →
〈
S JeK

∣∣∣∣ ret
〉

S JK # »a:κ # »x:τ → eK = K (# »a:κ, # »x:τ)→
〈
S JeK

∣∣∣∣ ret
〉

Figure 6. Definitional translation from Core to Sequent Core

Core to Sequent Core

Sa Jλx:τ .eK = λx:τ .Sa JeK Sa JxK = x

Sa JΛa:κ.eK = Λa:κ.Sa JeK Sa JK #»σ #»e K = K (#»σ ,
»

Sa JeK)

Sa JeK = µret.Sa JeK ret where e is a computation

Sa Jlet bind in eK k = letSa JbindK inSa JeK k

Sa
q
e e′

y
k = Sa JeK (Sa

q
e′

y
· k)

Sa Je τK k = Sa JeK (τ · k)

Sa
r
case eof

»
alt

z
k = let

»
bind inSa JeK (case of

»

Sa JaltK k′)

where (
»
bind , k′) = shrink(k)

Sa JeK k =
〈
Sa JeK

∣∣∣∣ k〉 where e is a value

Sa Jx:τ = eK = x:τ = Sa JeK

Sa Jrec { # »x:τ = e}K = rec
{

»

x:τ = Sa JeK
}

Sa Jx:τ → eK k = x:τ → Sa JeK k

Sa JK # »a:κ # »x:τ → eK k = K (# »a:κ, # »x:τ)→ Sa JeK k

Sequent Core to Core

D Jλx:τ .vK = λx:τ .D JvK D JxK = x

D JΛa:κ.vK = Λa:κ.D JvK D JK (#»σ , #»v)K = K #»σ
»

D JvK

D Jµret.cK = D JcK

D Jlet bind in cK = letD JbindK inD JcK

D J〈v || k〉K = D JkK [D JvK]

D Jjump j #»σ #»v K = j #»σ
»

D JvK

D Jv · kK = D JkK [�D JvK] D JretK = �

D Jσ · kK = D JkK [� σ] D
r
case of

»
alt

z
= case�of

»

D JaltK

D Jx:τ = vK =
(
x:τ = D JvK

)
D Jj:∃ # »a:κ.(#»τ)= µ̃[# »a:κ, # »x:τ].cK =

(
j:∀ # »a:κ. #»τ→σ=Λ # »a:κ.λ # »x:τ .D JcK

)
where ret : σ

D
r
rec

{
»
bp
}z

= rec
{

»

D JbpK
}

D Jx:σ → cK = x:σ → D JcK

D JK (# »a:κ, # »x:σ)→ cK = K # »a:κ # »x:σ → D JcK

Figure 7. Round-trip translations from Core to Sequent Core (Sa)
and back to Core (D)

3.1 The Definitional Translation
Luckily, we can leverage the relationship between natural deduction
and sequent calculus [9] to come up with a definitional translation
from Sequent Core to Core, as shown in Figure 6. Notice that value
expressions—lambdas and applied constructors, corresponding to
introductory forms of natural deduction, as well as variables—
translate one-for-one as terms of Sequent Core. Dealing with
computations—applications and case expressions, corresponding
to elimination forms, as well as let expressions—requires a µ-
abstraction, since they are about introducing a continuation or setting
up a binding in Sequent Core. Note how the introduction of µ-
abstractions turns the focus on the computation in an expression: the
operator of an application or the discriminant of a case becomes the
term in a command, where the rest becomes a continuation waiting
for its result.

3.2 A More Efficient Translation
Unfortunately, while the definitional translation into Sequent Core is
straightforward, it is not very practical due to an excessive number
of µ-abstractions. For example, the simple application f 1 2 3 is
translated as

S J((f 1) 2) 3K = µret.〈µret.〈µret.〈f || 1 · ret〉 || 2 · ret〉 || 3 · ret〉

instead of the direct µret. 〈f || 1 · 2 · 3 · ret〉. These µ-abstractions
are analogous to “administrative λ-abstractions” generated by CPS
translations, since they both represent some bookkeeping that needs
to be cleaned up before we get to the interesting part of a program.
Thus, we want the analog of an administrative-free translation [32]
for the sequent calculus, Sa, which we achieve by aggressively
performing µ reductions during translation as shown in Figure 7 to
give a reduced program in Sequent Core.

There is one caveat with the reduced translation into Sequent
Core, though. One case during translation has a chance to duplicate
the continuation by µ reduction: specifically, with case. Naïvely,
the µ-reduced translation for case would be:

r
case eof

»

alt
z
k = JeK (case of

»

JaltK k)

Because a case might have multiple alternatives, each alternative
gets its own embedded copy of the given continuation. Simply
copying the continuation is not good enough, as many programs can
cause chain reactions of duplication, unacceptably inflating the size
of the program (see Section 4.2). In practice we need to ensure that
the continuation is small enough before duplicating it. Specifically,
we force the continuation to be small by shrinking it, which we
achieve by introducing extra value bindings for large arguments in a
call stack and continuation bindings for the alternatives of a case.
For example, the (large) call stack v1 · v2 · ret can be shrunk to
x · y · ret along with the bindings x = v1 and y = v2. Additionally,
the (large) case continuation

case of K1 (x, y)→ c1; K2 (a, b, z)→ c2

can be shrunk down to

case of K1 (x, y)→ jump j1 x y; K2 (a, b, z)→ jump j2 a b z

along with the bindings j1 = µ̃[x, y].c1 and j2 = µ̃[a, b, z].c2.
Thus, when translating a case expression, we first shrink the given
continuation, set up any bindings that the shrinking process created,
and then copy the shrunken continuation in each alternative, as
shown in Figure 7.

3.3 Translating Back to Core
But we don’t just want to translate one way, we also want the ability
to come back to Core. That way, we can compose together both Core
and Sequent Core passes by translating to and fro. Since Sequent

Core contains continuations, an obvious way to translate back to
Core would be through a CPS translation. However, we want to
make sure that a round trip through translations gives us back a
similar program to what we originally had. This added round-trip
stipulation means that CPS is right out: the program we would get
from a CPS translation would be totally different from the one we
started with. Even worse, if we were to iterate these round trips, it
would compound the problem.

Thus, we look instead for a direct-style translation from Sequent
Core to Core, which essentially reverses the translation into Sequent
Core. This translation does not rely on types, but it does require
properly scoped labels as described in Section 2.2.3. The scope
restriction ensures that a Sequent Core program can be directly
interpreted as a purely functional Core program without the use of
any control effects.

3.4 Round Trips
The question remains: does a round-trip translation yield a similar
program? To be more precise, we should expect, as a minimum
criterion, that the round-trip translation respects observational
equivalence: the same behavior in all contexts. We consider two
Core expressions observationally equivalent, e1 ∼= e2, whenever
C[e1] terminates if and only if C[e2] does for all contexts C.
Observational equivalence of two Sequent Core terms is similar.
The answer is yes: the round-trip translation starting from Core
may introduce some bindings and perform some commutative
conversions, but the result is still observationally equivalent to
where we started. Likewise, all round trips starting from Sequent
Core produce observationally equivalent programs: The difference
here is that some µ reductions may be performed by the round trip
and, unfortunately, all continuation bindings are converted to value
bindings.

Proposition 3 (Round trip). D
q
SaJeK

y ∼= e and Sa
q
DJvK

y ∼= v.

Also note that both directions of translation are type-preserving,
as expected: the outputs of Sa and D are well-typed whenever their
inputs are. However, unlike with a CPS transformation, the types
are (largely) unchanged. In particular, the type of a Core expression
is not changed by translation, which is evident by the fact that Sa
doesn’t change the types of bindings. Going the other way, D only
changes the types of labels and nothing else, which is again evident
by the translation of bindings. So the type of Sequent Core terms
does not change by translation either.

Proposition 4 (Type preservation). If Γ ` e : τ in Core then
Γ ` Sa JeK : τ . If Γ ` v : τ in Sequent Core then Γ ` D JvK : τ .

It is unfortunate that continuation bindings are lost en route
during a round-trip translation starting from Sequent Core, as
observed above. We had those continuation bindings for a reason,
and they should not be erased. Fortunately though, there is a program
transformation known as contification (described later in Section 5)
which can recover the lost continuation bindings (and more) from
the soup of value bindings, effectively re-contifying them. That
means we can move between Core and Sequent Core with wild
abandon without losing anything.

4. From Theory to Practice
To find out whether Sequent Core is a practical intermediate lan-
guage, we implemented a plugin for the Glasgow Haskell Compiler
(GHC), a mature, production-quality compiler for Haskell. In this
section we reflect what we learned from this experience.

4.1 Sequent Core in GHC
GHC’s simplifier is the central piece of GHC’s optimization pipeline,
comprising around 5,000 lines of Haskell code that has been
refined over two decades. It applies a large collection of optimizing
transformations, including inlining, β-reduction, η-conversion, let
floating, case-of-case, case-of-known-constructor, etc.

We implemented a Sequent Core plug-in that can be used with
an unmodified GHC. The plug-in inserts itself into the Core-to-
Core optimization pipeline and replaces each invocation of GHC’s
simplifier by the following procedure: convert from Core to Sequent
Core; apply the same optimizing transformations as the existing
simplifier; and convert back to Core. Here is what we learned:

• Sequent Core is clearly up to the job. In a few months we were
able to replicate all of the cleverness that GHC’s Simplifier
embodies, and our experiments confirm that the performance
of the resulting code is essentially identical (see Section A in
the appendix for details). Considering the maturity of GHC’s
existing Simplifier, this is a good result.
• We originally anticipated that Sequent Core could simplify

GHC’s Simplifier, since the latter accumulates and transforms
an explicit continuation (called a SimplCont) in the style of
a zipper [18], which is closely analogous to Sequent Core’s
continuations. Thus, we could say that Sequent Core gives a
language to the logic that lies in the heart of GHC’s Simplifier,
providing a more direct representation of GHC optimizations.
In practice, we found that Sequent Core did not dramatically
reduce the lines of code of the Simplifier. The syntax of Sequent
Core jumps straight to the interesting action, avoiding the need to
accumulate a continuation. However, the Simplifier is complex
enough, and requires enough auxiliary information, that the
lines of code saved here were a drop in the bucket. The savings
were further offset by functions need to traverse the additional
syntactic structures of Sequent Core.

So on the practical front, we are not yet ready to abandon Core
in favor of Sequent Core in GHC. However, we did find an aspect of
optimization for which Sequent Core was qualitatively better than
Core: the treatment of join points, to which we turn next.

4.2 Join Points and Case-of-Case
Optimizing compilers commonly push code down into the branches
of conditional constructs when possible, bringing ifs and cases to
the top level [39, 40]. Besides clarifying the possible code paths,
this tends to put intermediate results in their proper context, which
enables further optimizations.

GHC performs such code motion aggressively. The most ambi-
tious example is the case-of-case transform [30, 38]. Consider:

half x = if even x then Just(x ‘div ‘ 2) elseNothing

After desugaring and inlining, half is written in Core as:

half = λx. case (case x ‘mod ‘ 2 of 0 → True
→ False)of

True → Just(x ‘div ‘ 2)
False → Nothing

Notice how the outer boolean case will receive a True or False
value, depending on the result of (x ‘mod ‘ 2). We can make this
fact clearer by applying the case-of-case transform, bringing the
whole outer case inside each branch of the inner case:

half = λx. case x ‘mod ‘ 2 of
0 → case True of True → Just(x ‘div ‘ 2)

False → Nothing
→ case False of True → Just(x ‘div ‘ 2)

False → Nothing

Happily, case-of-case has revealed an easy simplification, giving:

half = λx. case x‘mod ‘ 2 of 0 → Just(x ‘div ‘ 2)
→ Nothing

Of course, this is the ideal outcome, because the outer case
ultimately vanished entirely. But if case-of-case did not reveal
further simplifications, we would have duplicated the outer case,
whose alternatives might be of arbitrary size.6

Like many compilers, including the original ANF implementa-
tion [13], GHC avoids excessive code duplication by abstracting
large case alternatives into named functions that serve as join points.
A typical result looks like this:

f : Int → Int = λx. let j:Maybe Int → Int = λw. . . .
in case g x of Left y → j (Just y)

Right → j Nothing

It may appear that we have introduced extra overhead—allocating
a closure for j (at the let) and calling the function. But a function
like j has special properties: it is only tail-called, and it is never
captured in a closure. GHC’s code generator takes advantage of
these properties and compiles the tail call to j into two instructions:
adjust the stack pointer and jump. Apart from this special treatment
in the code generator, GHC’s Core Simplifier does not treat join
points specially: they are just local function bindings, subject to the
usual optimizations. Collapsing multiple concepts into one can be a
strength—but as we see next, it can also be a weakness.

4.3 Losing Join Points
Continuing the example of the previous section, suppose f is called
in the following way: case f xof 0 → False; → True. If f
is inlined at this call site, another case-of-case transformation will
occur, and after some further simplifications, we get this:

let j:Maybe Int → Int = λw. . . .
in case g x of Left y → case j (Just y) of 0 → False

→ True
Right → case j Nothing of 0 → False

→ True

Now j is no longer tail-called and must be compiled as a regular
function, with all the overhead entailed. Case-of-case has ruined a
perfectly good join point!

This does not happen in Sequent Core. Here is the same function
f in Sequent Core:

f : Int → Int = λx.µret.
let j:Maybe Int = µ̃[w]. . . . ret . . .
in 〈 g ||x · case of Left y → jump j Just(y)

Right → jump jNothing 〉
This time, j is represented by a labeled continuation accepting a
Maybe Int . Moreover, observe that the body of j refers to the ret
bound the surrounding µ. In Sequent Core, the case-of-case transfor-
mation is implemented by a µ reduction, which substitutes a case
continuation for ret in a computation. For example, inlining f into
the command 〈f ||x · case of 0→ False; → True〉 followed by
routine Sequent Core simplification instead gives us:

let j:Maybe Int = µ̃[w]. . . . case of 0→ False; → True . . .
in 〈 g ||x · case of Left y → jump j Just(y)

Right → jump jNothing 〉
Notice what happened here: just by substituting for ret, we did not
push the continuation into the alternatives of the case, but instead
it naturally flowed into the body of j. Jumps are stable in Sequent

6 We see the same code duplication issue arise during translation in Section 3;
we avoid duplication with the same solution in both instances.

Core, and the operational semantics of Sequent Core has showed us
how to perform case-of-case without ruining any join points!

Could we do the same in Core? Well, yes: the case-of-case
transform should (somehow) push the outer case into the join point
j itself, rather than wrapping it around the calls to j, as in

let j:MaybeInt→Bool=λw. . . . case eof 0→False; →True . . .
in case g x of Left y → j (Just y)

Right → j Nothing

where the case eof 0 → False; → True means to wrap every
expression e that returns from j with the case analysis. This effect
is hard to achieve in Core as it stands, because join points are not
distinguished and so the above substitution is not obvious. However,
it is natural and straightforward in Sequent Core.

5. Contification
As we saw in Section 3, the translation from Sequent Core to Core
is lossy. Sequent Core maintains a distinction between multiple-
input continuations (join points) and ordinary functions because
they have a different operational and logical reading, but Core only
has functions. Converting Core to Sequent Core produces a program
with no join points; and even if the Sequent Core Simplifier creates
some, they will be lost in the next round trip through Core.

CPS-based compilers often employ a demotion technique called
contification [20] that turns ordinary functions into continuations.
Since direct jumps are faster than function calls, this operation is
useful in its own right, but for us it is essential to make the round trip
from Sequent Core to Core and back behave like an identity function.
So, whenever we translate to Sequent Core, we also perform a simple
contification pass that is just thorough enough to find and restore
any continuation bindings that could have been lost in translation.
In other words, contification picks up what we dropped while going
back and forth between the two representations, and hence we are
“re-contifying.” But we may also discover, and then exploit, join
points that happened to be written by the user (Section 5.2).

The mechanics of contification are straightforward. In essence,
contification converts function calls (which need to return) into
direct jumps (which don’t) by baking the calling context into the
body of the function. For example, suppose we have this code:

let f = λy.µret.c
in 〈 g ||x · case of A z → 〈 f || z · ret 〉

B → 〈True || ret 〉
C → 〈 f ||True · ret 〉〉

Here f is an ordinary function, bound by the let and called in two of
the three branches of the case. Moreover, both its calls are saturated
tail calls, and f is not captured inside a thunk or function closure.
Under these circumstances, it is semantics-preserving to replace
f with a join point and replace its calls with more efficient direct
jumps, thus:

let j = µ̃[y].c
in 〈 g ||x · case of A z → jump j z

B → 〈True || ret〉
C → jump j True 〉

This transformation is sound even if the binding of f is recursive,
provided all the recursive calls obey the same rules.

We saw in Section 4.2 that GHC already performs a similar
analysis during code generation to identify tail calls that can be
converted to jumps. However, this conversion happens just once
and only after all Core-to-Core optimizations are finished. Here, we
bring contification forward as a pass that can happen in the midst
of the main optimization loop, giving a language to talk about join
points for other optimizations to exploit.

5.1 Analysis and Transformation
We divide the contification algorithm into two phases, an analysis
phase and a transformation phase. The analysis phase finds func-
tions that can be contified; then the transformation phase carries out
the necessary rewrites in one sweep. See Section B in the appendix
for a more detailed description of the algorithm.

In the analysis phase, we are interested in answering the all-
important question: given a let-bound function f (a potential join
point), is every call to f a saturated tail call? Sequent Core lets
us state this condition precisely: all its calls must be of the form
〈f || #»v · ret〉, where the ret is the same ret that is in scope at f ’s
binding site. This is another occasion on which it is helpful to think
of ret as a lexically-scoped variable bound by µret.

To answer the question, the algorithm for the analysis phase
gathers data bottom-up, similar to a free-variable analysis, and
marks which let-bound functions may be replaced with labeled
continuations. During traversal, the analysis determines the full set
of variables that actually appear free in an expression, which we call
the free set, as well as the subset of those variables that only appear
as tail calls, which we call the good set. Three basic rules govern
the upward propagation of these sets of variables:

• The head variable of a tail call—that is, any f in a command of
the form 〈f || #»v · ret〉—is good so long as it is not free in the
arguments.
• Terms cannot have any good variables, since labels cannot appear

free in a term. The exception to this rule is a bound function that
will be contified, since of course it won’t be a term anymore;
thus contification has a cascading effect.
• When considering other forms of expressions with several

subexpressions, a variable is good on the whole if it is good
in at least one subexpression and bad in none of them.

If a let-bound variable is considered good after analyzing its
entire scope, then we mark it for contification. For a non-recursive
binding let f = v in c, the scope is just the body of the let, c. For a
set of mutually recursive bindings let rec

{
»

f = λ #»x .µret.c
}
in c′,

the scope includes all the function bodies #»c as well as c′. Note
that we can’t contify only part of a recursive set; it’s all or none.
The reason for this restriction is that if we only contified some
of the functions in a recursive binding, then those newly labeled
continuations would be out of scope for the uncontified functions
left behind, thus breaking the mutual recursion.

Once the analysis is complete, the transformation itself is straight-
forward. Note that we assume that all functions begin with a series
of lambdas and then one µ; this can always be arranged, since v
and µret.〈v || ret〉 are equivalent by η-conversion. At each binding
f = λ #»x .µret.c marked for contification, we pick a fresh label j
and rewrite the binding as j = µ̃[#»x].c. Then, at every call site of a
contified f , we rewrite 〈f || #»v · ret〉 as jump j #»v .

This algorithm is similar to Kennedy’s [20], except that we
only contify functions called with the ret continuation rather than
any single continuation. Clearly, this algorithm impacts fewer
functions than the more general one. We also implemented a more
comprehensive (and thus more expensive) contification pass for
GHC, only to find it offered little impact on performance. Thus,
the simpler algorithm seems to lie in a sweet spot between ease
of implementation, cost of execution, and recovery of previously
identified join points.

5.2 Discovering Join Points
By contifying aggressively enough, we may be able to discover—
and exploit—additional join points that happen to arise naturally in
the program. Consider the standard library function find that returns

the first value in a list satisfying a predicate, or Nothing if none
satisfy it:

find : (a→ Bool)→ [a]→ Maybe a

find = λp.λxs. let go = λys. case ys of
[] → Nothing

(y : ys′) → case p y of
True → Just y

False → goys′

in go xs

Here go is a join point, and our contification analysis can discover
that fact.7 Now suppose that find is called as:

f = λxs. case find even xs of Nothing → 0
Just x → x+ 1

In GHC today, after inlining and performing some routine simplifi-
cations, we get

f = λxs. let go = λys. case ys of
[] → Nothing

(y : ys′) → case y ‘mod ‘ 2 of
0 → Just y

→ go ys′

in case go xs of Nothing → 0
Just x → x+ 1

And now go is no longer a join point, another example of the
phenomenon we previously saw in Section 4.3. In Core, this is
as far as we can go. In Sequent Core, however, go can be contified,
and after the dust settles, we end up with the analog of:

f = λxs. let go = λys. case ys of
[] → 0

(y : ys′) → case y ‘mod ‘ 2 of
0 → y + 1

→ go ys′

in go xs

This code is much better: the allocation of the function closure for
go and the intermediate value (Just y) are both avoided, the outer
case disappears, and the recursive call in go turns into a jump. In
Sequent Core, once a join point is discovered by contification, it
stays a join point.

5.3 Caveats
Since idiomatic Haskell code uses curried functions, we must be
careful about what we consider a tail call. Note the rewrites above
assumed the number of arguments in the tail calls matched the
number of outer lambdas in the function. Thus, for our purposes, all
tail calls must also be exact—each must provide exactly as many
arguments as there are outer lambdas in the function definition.
This restriction can be lifted so long as the calls are consistent in
the number of arguments passed, also known as the call arity [7].
However, it is unclear that this is useful often enough to warrant
the additional complexity. For the purpose of re-contification after
round-trip translations, all relevant tail calls will already be exact.

Thus far, we have neglected to mention the impact of polymor-
phism on contification. Polymorphic functions are no problem, with
one proviso: a function cannot be contified if it is polymorphic
in its return type. To see why, suppose we have some function
f : ∀a: ? .Int → a→ a and we generate the continuation:

j = µ̃[a:?, n:Int, x:a]. 〈f || a · n · x · ret〉

7 Note that go is recursive, but recursive join points are fine as long as they
are properly tail-called.

We have a problem: the continuation here cannot be well-typed,
because ret is a free variable that comes from the outside, so ret
cannot by typed by this a since a was not in scope when ret was
bound. Note that this is not an issue particular to Sequent Core; the
same phenomenon arises in typed CPS languages. Contification in
a typed setting must always be careful here.

Like arity, this is not a fatal issue. Just as we can call f with
True by passing Bool as the type argument, we can contify f by
fixing the appropriate return type in context. For example, if the ret
in scope has type Bool, then the following is well-typed:

j = µ̃[n:Int , x:Bool]. 〈f ||Bool · n · x · ret〉
However, this situation appears to be vanishingly rare in practice.
And in the case of re-contification, Sequent Core join points never
have a polymorphic return type when translated to Core.8 Thus,
while correctness demands that we at least check for polymorphic
return types, re-contification can simply give up on them.

6. Related Work
6.1 Relation to Sequent Calculi
We might ask how and why Sequent Core differs from similar
computational interpretations of the sequent calculus, like the λµµ̃-
calculus [9] or System L [26] for example. A primary difference
is that in lieu of let bindings, these previous languages have
continuations of the form µ̃x.c, as mentioned in Section 2.2.2. As it
turns out, they are not needed in Sequent Core. Indeed, a common
reading for µ̃x.c at the top of a command is:

〈v || µ̃x.c〉 = (letx = v in c)

where the µ̃ is replaced with an explicit substitution via let. Then, us-
ing the call-by-name semantics for Sequent Core, all µ̃-abstractions
can be lifted9 to the top of a command, so every µ̃-abstraction can
be written as a let. Under a call-by-value semantics, µ̃-abstractions
play a more crucial role as noted by Curien and Herbelin [9], but
in that case they are exactly the same as a default case in Sequent
Core: µ̃x.c = case of x→ c. So again, the extra continuation is
not needed. Considering the fact that the recursion so elegantly ex-
pressed by a let cannot be represented with µ̃-abstractions alone
gives let its primary role in Sequent Core.

The other differences between Sequent Core and previous se-
quent calculi are the labeled, multiple-input continuations and jumps.
The exact formulations of these constructs were designed with the
needs of a practical compiler in mind, but they do have a more
theoretical reading as well. In particular, we could (and indeed at
one point we did) consider adding general existential types to the
language. That way a multiple-input continuation µ̃[#»a , #»x].c might
be interpreted as just a case continuation case of (#»a , #»x)→ c, so
that labels just refer to single-input continuations and jumps are just
cut pairs 〈(#»σ , #»v) || j〉. However, for this to represent the correct
operational cost at run time, it is crucial that these existential tuples
are unboxed [29], meaning that they are values of a truly positive
type [26] unlike the normally boxed Haskell data types. Addition-
ally, unboxed (existential) tuples give less restraint for labels and
jumps than the syntactic limitations implicitly imposed in Figure 1.
The result is an unfortunately heavy-handed encoding unless stricter
measures are taken for these positive types, as in Zeilberger’s [46]
interpretation of focalization.

8 Consider a term containing a local join point with no intervening µ:

µret. . . . let j:∃ # »a:κ.(#»τ) = µ̃[# »a:κ, # »x:τ].c in . . .

Assuming the term has type σ, the µ-bound ret will also have type σ. After
translation, j’s type becomes ∀ # »a:κ. #»τ → σ, where #»a cannot occur free in
the return type σ due to the typical hygiene requirements of translation.
9 This lifting can be done by the ς reductions of [44] and [25].

6.2 CPS as an Intermediate Language
Though continuations had been actively researched for nearly a
decade [34], the first use of CPS for compilation appeared in 1978,
in the Rabbit compiler for Scheme [40]. Steele was interested in
the connection between Scheme and the λ-calculus [43], and CPS
was a way to “elucidate some important compilation issues,” such
as evaluation order and intermediate results, while maintaining that
connection. He also noted the ease of translation to an imperative
machine language. Standard ML of New Jersey [1] is another
prominent example; it even performs such low-level tasks as register
assignment within the CPS language itself.

So what’s stopping GHC from just adopting CPS? One answer is
“but which CPS?” Usually the “CPS” intermediate language refers to
“the language produced by the call-by-value CPS transform.” Surely
we would not use this “CPS” to compile a non-strict language like
Haskell. Of course, there are call-by-name [17, 32] and call-by-
need [27] CPS transforms, but (to our knowledge) they have not
been used in compilers before, leaving us in unknown territory.

More importantly, the effect of any CPS transform is to fix an
evaluation order in the syntax of the program, but GHC routinely
exploits the ability to reorder calculations, like shifting between
call-by-need and call-by-value, which gives more flexibility for
optimizing a pure, lazy language like Haskell [30].

Hence an advantage of a sequent calculus for GHC: like the
λ-calculus, the syntax does not fix a specific evaluation order. For
example, we illustrated both call-by-name (Figure 2) and call-by-
need (Figure 3) readings for the same Sequent Core programs, and
call-by-value would be valid, too. So we can still reason about
Haskell programs with call-by-name semantics while implementing
them efficiently with call-by-need.

There is one more advantage shared by both Core and Sequent
Core, but not CPS, which is critically important for GHC. Specifi-
cally, GHC allows for arbitrary rewrite rules that transform function
calls [31], which enable user optimizations like stream fusion [8].
Both Core and Sequent Core make expressing and implementing
these custom rules easy, since both languages make nested function
call structure in expressions likemap f (map g xs) apparent: either
as a chain of applications or a call stack. Instead, CPS represents
nested functional calls in the source abstractly as in:

λk.map g (λh.h xs (λys.map f (λh′.h′ ys k)))

To understand the original call structure of the program requires
chasing information through several indirections. Instead, Sequent
Core represents function calls structurally as stacks that can be
immediately inspected, so bringing continuations to GHC without
getting in the way of what GHC already does. In this light, we can
view the sequent calculus as a “strategically defunctionalized” [36]
CPS language. There is an essential trade-off in the expressive ca-
pabilities of rigid structure versus free abstraction [35], and the
additional structure provided by call stacks enables more optimiza-
tions, like rewrite rules, by making continuations scrutable.

6.3 ANF as an Intermediate Language
In 1992, Sabry and Felleisen [37] demonstrated that the actions of a
CPS compiler could be understood in terms of the original source
code. Hence, though a CPS transform could express call-by-value
semantics for λ-terms, that same semantics could be expressed
as reductions in the original term. The new semantics extended
Plotkin’s call-by-value λ-calculus [32] with more reductions and
hence further possible optimizations. Flanagan et. al. [13] argued
that the new semantics obviated the need for CPS in the compiler,
since the same work would be performed by systematically applying
the new reductions, putting the source terms into administrative
normal form (ANF). Representations in ANF became popular in the
following years, as its ease of implementation provides an obvious

benefit over CPS, but its costs took some time to appreciate in
practical use. In 2007, Kennedy [20] outlined some of these issues,
encouraging compiler writers to “give CPS a second chance.”

It is worthwhile to point out that Sequent Core does not suf-
fer from the same difficulties as ANF described by Kennedy. Se-
quent Core does not require renormalization after routine transfor-
mations: the syntax is closed under reductions like inlining. Fur-
thermore, the various commutative conversions in these direct-style
representations—such as case-of-case discussed in Section 4.2—are
uniformly represented through µ-abstraction and µ-reduction in Se-
quent Core [26], which is a strength shared with CPS. Likewise,
labeled continuations in Sequent Core serve an analogous purpose
to labeled continuations in CPS, which preserve code sharing during
these commutative conversions. Therefore, we can say that the se-
quent calculus can do everything CPS can, so Sequent Core retains
the advantages of continuations laid out by Kennedy.

6.4 Other Representations
Our focus has been on functional programming, but of course
compilation in the imperative world has long been dominated by the
static single-assignment form (SSA) [10]. While it is known that
SSA can be converted to CPS [19], the flat structure of SSA may
be more convenient for representing imperative programs wherein
block layout is more natural and higher-order features are not used.

We don’t have to choose between flat and higher-order, however.
Thorin [23] is a graph-based representation aiming to support both
imperative and functional code by combining a flat structure for ease
of code transformation and first-class closures for implementing
higher-order languages. However, Thorin is still intended for use
in strict languages with pervasive side effects; it remains to be
seen whether such a representation could be adapted for high-level
optimizations in a non-strict regime such as Haskell.

7. Reflections on Intermediate Languages
There are many different goals we have for an intermediate language
in an optimizing compiler, some of which seem at odds with one
another. In a perfect world, an intermediate representation would,
among other things:

1. Have a simple grammar, which makes it easy to traverse and
transform programs written in the language. For example, if the
grammar is represented as data types in a functional language,
there should be a minimal number of (mutually) recursive data
types that represent the main workhorse of runtime behavior.

2. Have a simple operational meaning, which makes it easy to ana-
lyze and understand the performance and behavior of programs.
For example, it should be easy to find the “next” step of the
program from the top of the syntax tree, and language constructs
should be easy to compile to machine code.

3. Be as flexible in evaluation order as the source language permits,
to permit as many transformations and out-of-order reductions
as possible during optimization.

4. Make it easy to express control flow and shared join points, to
reduce code size without hurting performance.

5. Make it easy to apply arbitrary rewrite rules expressed in the
source language, especially for curried function applications
when they appear pervasively in the source language.

We summarize the trade-offs for different representation styles,
using + for “good”, “−” for “not good”, and blank for neutral,
in Figure 8. Is there a way to get the best of all worlds? Perhaps,
just as Sabry and Felleisen showed that you can get the advantages
of CPS by using direct-style ANF, we would be able to get the
advantages of a sequent calculus in a direct-style variant of Core.

Core Sequent Core CPS
Simple grammar +

Operational reading + ++ ++
Flexible eval order + + −

Control flow − ++ ++
Rewrite rules + + −

Figure 8. Advantages of different representation styles

In particular, the killer advantage of Sequent Core has turned out
to be its treatment of join points, which are different from both
functions and continuations, and the more powerful case-of-case
transformations that they support (Section 4.2). Informed by this
experience, we speculate that it should be possible to augment Core
with explicit join points, rather than treat them as ordinary bindings
the way GHC does now. We are actively exploring this line of work,
using Sequent Core as our model that gives us a foundation for the
theory and design of a direct-style λ-calculus with join points. Such
a λ-calculus would sit between Core and Sequent Core by having
both a simple syntactic structure while also preserving the extra
information about control flow. Thus, Sequent Core can currently
be seen as a laboratory for compiler intermediate representations.

In developing Sequent Core, we had a love/hate relationship
with purity—specifically, with the absence of control effects. On
the one hand, keeping Sequent Core “pure” lets us easily leverage
the existing technology for compiling the λ-calculus efficiently. The
restrictions on continuation variables and jumps create the direct-
style correspondence between the two, enabling the same techniques
for simplification and call-by-need evaluation (in contrast to [5, 6]).
On the other hand, the sequent calculus gives rise to a language of
first-class control effects in its natural state, equivalent to adding
callcc to the λ-calculus. Thus, the classical sequent calculus is more
expressive [11], and lets us collapse otherwise distinct concepts—
like control flow and data flow, or functions and data structures—into
symmetrical dual pairs. Here, we chose to restrain Sequent Core
and maintain the connection with Core. However, it still remains to
be seen how an unrestrained, and thus more cohesive and simpler,
classic sequent calculus would fare as the intermediate language of
a compiler.

Looking back to the table of trade-offs, we see that Sequent Core
strikes a middle ground between Core and CPS. Beside the point
about simple grammar—for which it is hard to improve upon the
elegance of the λ-calculus—Sequent Core manages to combine the
advantages of both direct and continuation-passing styles. Clearly,
the focus of our comparison was between Core and Sequent Core,
for which we conclude that the sequent calculus shows us how to
bring control flow and continuation-passing-style optimizations to
GHC without getting in the way of what GHC already does well. But
this is a two-way road: the sequent calculus can also teach us how to
bring flexibility and direct-style optimizations, like rewrite rules, to
CPS compilers by bringing the structures underlying continuations
out of the abstractions. We chalk this up as another in a long line
of wins for the Curry-Howard isomorphism: in the debate between
direct and continuation-passing style compilers, the logic tells us
how we might have our cake and eat it too.

Acknowledgements
We would like to thank Iavor S. Diatchki for his help and input
on the design and implementation of Sequent Core, and to thank
Matthias Felleisen and Olin Shivers for discussions on the merits of
continuations passing style. Paul Downen and Zena M. Ariola have
been supported by NSF grant CCF-1423617.

References
[1] A. W. Appel. Compiling with Continuations. Cambridge University

Press, New York, NY, USA, 1992. ISBN 0-521-41695-7.
[2] Z. M. Ariola and H. Herbelin. Control reduction theories: The benefit of

structural substitution. Journal of Functional Programming, 18(3):373–
419, May 2008. ISSN 0956-7968. doi: 10.1017/S0956796807006612.
URL http://dx.doi.org/10.1017/S0956796807006612.

[3] Z. M. Ariola, J. Maraist, M. Odersky, M. Felleisen, and P. Wadler.
A call-by-need lambda calculus. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’95, pages 233–246, New York, NY, USA, 1995.
ACM. ISBN 0-89791-692-1. doi: 10.1145/199448.199507. URL
http://doi.acm.org/10.1145/199448.199507.

[4] Z. M. Ariola, A. Bohannon, and A. Sabry. Sequent calculi and
abstract machines. ACM Transactions on Programming Languages
and Systems, 31(4):13:1–13:48, May 2009. ISSN 0164-0925. doi:
10.1145/1516507.1516508. URL http://doi.acm.org/10.1145/
1516507.1516508.

[5] Z. M. Ariola, H. Herbelin, and A. Saurin. Classical call-by-need and
duality. In Proceedings of the 10th International Conference on Typed
Lambda Calculi and Applications, TLCA’11, pages 27–44, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-21690-9. URL
http://dl.acm.org/citation.cfm?id=2021953.2021961.

[6] Z. M. Ariola, P. Downen, H. Herbelin, K. Nakata, and A. Saurin.
Classical call-by-need sequent calculi: The unity of semantic arti-
facts. In Proceedings of the 11th International Conference on Func-
tional and Logic Programming, FLOPS’12, pages 32–46, Berlin, Hei-
delberg, 2012. Springer-Verlag. ISBN 978-3-642-29821-9. doi: 10.
1007/978-3-642-29822-6_6. URL http://dx.doi.org/10.1007/
978-3-642-29822-6_6.

[7] J. Breitner. Call arity. In Trends in Functional Programming - 15th
International Symposium, TFP 2014, Soesterberg, The Netherlands,
May 26-28, 2014. Revised Selected Papers, pages 34–50, 2014. doi: 10.
1007/978-3-319-14675-1_3. URL http://dx.doi.org/10.1007/
978-3-319-14675-1_3.

[8] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists
to streams to nothing at all. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’07, pages
315–326, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-815-
2. doi: 10.1145/1291151.1291199. URL http://doi.acm.org/10.
1145/1291151.1291199.

[9] P. Curien and H. Herbelin. The duality of computation. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000,
pages 233–243, 2000. doi: 10.1145/351240.351262. URL http:
//doi.acm.org/10.1145/351240.351262.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, 1991. doi: 10.1145/115372.115320. URL
http://doi.acm.org/10.1145/115372.115320.

[11] M. Felleisen. On the expressive power of programming languages.
Science of Computer Programming, 17(1-3):35–75, Dec. 1991. ISSN
0167-6423. doi: 10.1016/0167-6423(91)90036-W. URL http://dx.
doi.org/10.1016/0167-6423(91)90036-W.

[12] M. Felleisen and D. P. Friedman. Control operators, the SECD-
machine, and the λ-calculus. In M. Wirsing, editor, Formal Description
of Programming Concepts III, pages 193–219. North Holland Press,
Amsterdam, 1986.

[13] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In Proceedings of the ACM SIG-
PLAN 1993 Conference on Programming Language Design and Im-
plementation, PLDI ’93, pages 237–247, New York, NY, USA, 1993.
ACM. ISBN 0-89791-598-4. doi: 10.1145/155090.155113. URL
http://doi.acm.org/10.1145/155090.155113.

[14] G. Gentzen. Investigations into logical deduction. In M. Szabo, editor,
Collected papers of Gerhard Gentzen, pages 68–131. North-Holland,
1969.

[15] H. Herbelin. A lambda-calculus structure isomorphic to gentzen-
style sequent calculus structure. In Computer Science Logic, 8th
International Workshop, CSL ’94, Kazimierz, Poland, September 25-30,
1994, Selected Papers, pages 61–75, 1994. doi: 10.1007/BFb0022247.
URL http://dx.doi.org/10.1007/BFb0022247.

[16] H. Herbelin. Explicit substitutions and reducibility. Journal of Logic
and Computation, 11(3):431–451, 2001. doi: 10.1093/logcom/11.3.
431. URL http://logcom.oxfordjournals.org/content/11/
3/431.abstract.

[17] M. Hofmann and T. Streicher. Continuation models are universal for
lambda-mu-calculus. In Proceedings, 12th Annual IEEE Symposium
on Logic in Computer Science, Warsaw, Poland, June 29 - July 2,
1997, pages 387–395, 1997. doi: 10.1109/LICS.1997.614964. URL
http://dx.doi.org/10.1109/LICS.1997.614964.

[18] G. Huet. The zipper. Journal of Functional Programming, 7(5):549–
554, Sept. 1997. ISSN 0956-7968. doi: 10.1017/S0956796897002864.
URL http://dx.doi.org/10.1017/S0956796897002864.

[19] R. A. Kelsey. A correspondence between continuation passing style
and static single assignment form. In Papers from the 1995 ACM
SIGPLAN Workshop on Intermediate Representations, IR ’95, pages
13–22, New York, NY, USA, 1995. ACM. ISBN 0-89791-754-5. doi:
10.1145/202529.202532. URL http://doi.acm.org/10.1145/
202529.202532.

[20] A. Kennedy. Compiling with continuations, continued. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’07, pages 177–190, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-815-2. doi: 10.1145/1291151.1291179.
URL http://doi.acm.org/10.1145/1291151.1291179.

[21] D. A. Kranz, R. Kelsey, J. Rees, P. Hudak, and J. Philbin. ORBIT: an
optimizing compiler for Scheme. In Proceedings of the 1986 SIGPLAN
Symposium on Compiler Construction, Palo Alto, California, USA,
June 25-27, 1986, pages 219–233, 1986. doi: 10.1145/12276.13333.
URL http://doi.acm.org/10.1145/12276.13333.

[22] J. Launchbury. A natural semantics for lazy evaluation. In Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’93, pages 144–154, New York, NY,
USA, 1993. ACM. ISBN 0-89791-560-7. doi: 10.1145/158511.158618.
URL http://doi.acm.org/10.1145/158511.158618.

[23] R. Leißa, M. Köster, and S. Hack. A graph-based higher-order
intermediate representation. In Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Op-
timization, CGO ’15, pages 202–212, Washington, DC, USA, 2015.
IEEE Computer Society. ISBN 978-1-4799-8161-8. URL http:
//dl.acm.org/citation.cfm?id=2738600.2738626.

[24] A. Meyer and S. Cosmadakis. Semantical Paradigms: Notes for an
Invited Lecture. Technical report, MIT Laboratory for Computer
Science, 545 Technology Square, Cambridge, MA 02139, July 1988.

[25] G. Munch-Maccagnoni. Focalisation and classical realisability. In
Proceedings of the 23rd CSL International Conference and 18th EACSL
Annual Conference on Computer Science Logic, CSL’09/EACSL’09,
pages 409–423, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
3-642-04026-8, 978-3-642-04026-9. URL http://dl.acm.org/
citation.cfm?id=1807662.1807695.

[26] G. Munch-Maccagnoni. Syntax and Models of a non-Associative
Composition of Programs and Proofs. PhD thesis, Univ. Paris Diderot,
2013.

[27] C. Okasaki, P. Lee, and D. Tarditi. Call-by-need and continuation-
passing style. Lisp and Symbolic Computation, 7(1):57–82, Jan.
1994. ISSN 0892-4635. doi: 10.1007/BF01019945. URL http:
//dx.doi.org/10.1007/BF01019945.

[28] M. Parigot. Lambda-my-calculus: An algorithmic interpretation of
classical natural deduction. In Proceedings of the International Con-
ference on Logic Programming and Automated Reasoning, LPAR ’92,
pages 190–201, London, UK, UK, 1992. Springer-Verlag. ISBN 3-540-
55727-X. URL http://dl.acm.org/citation.cfm?id=645706.
663989.

[29] S. L. Peyton Jones and J. Launchbury. Unboxed values as first
class citizens in a non-strict functional language. In Proceedings

http://dx.doi.org/10.1017/S0956796807006612
http://doi.acm.org/10.1145/199448.199507
http://doi.acm.org/10.1145/1516507.1516508
http://doi.acm.org/10.1145/1516507.1516508
http://dl.acm.org/citation.cfm?id=2021953.2021961
http://dx.doi.org/10.1007/978-3-642-29822-6_6
http://dx.doi.org/10.1007/978-3-642-29822-6_6
http://dx.doi.org/10.1007/978-3-319-14675-1_3
http://dx.doi.org/10.1007/978-3-319-14675-1_3
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/1291151.1291199
http://doi.acm.org/10.1145/351240.351262
http://doi.acm.org/10.1145/351240.351262
http://doi.acm.org/10.1145/115372.115320
http://dx.doi.org/10.1016/0167-6423(91)90036-W
http://dx.doi.org/10.1016/0167-6423(91)90036-W
http://doi.acm.org/10.1145/155090.155113
http://dx.doi.org/10.1007/BFb0022247
http://logcom.oxfordjournals.org/content/11/3/431.abstract
http://logcom.oxfordjournals.org/content/11/3/431.abstract
http://dx.doi.org/10.1109/LICS.1997.614964
http://dx.doi.org/10.1017/S0956796897002864
http://doi.acm.org/10.1145/202529.202532
http://doi.acm.org/10.1145/202529.202532
http://doi.acm.org/10.1145/1291151.1291179
http://doi.acm.org/10.1145/12276.13333
http://doi.acm.org/10.1145/158511.158618
http://dl.acm.org/citation.cfm?id=2738600.2738626
http://dl.acm.org/citation.cfm?id=2738600.2738626
http://dl.acm.org/citation.cfm?id=1807662.1807695
http://dl.acm.org/citation.cfm?id=1807662.1807695
http://dx.doi.org/10.1007/BF01019945
http://dx.doi.org/10.1007/BF01019945
http://dl.acm.org/citation.cfm?id=645706.663989
http://dl.acm.org/citation.cfm?id=645706.663989

of the 5th ACM Conference on Functional Programming Languages
and Computer Architecture, pages 636–666, London, UK, UK, 1991.
Springer-Verlag. ISBN 3-540-54396-1. URL http://dl.acm.org/
citation.cfm?id=645420.652528.

[30] S. L. Peyton Jones and A. L. M. Santos. A transformation-based
optimiser for Haskell. Science of Computer Programming, 32(1-3):
3–47, Sept. 1998. ISSN 0167-6423. doi: 10.1016/S0167-6423(97)
00029-4. URL http://dx.doi.org/10.1016/S0167-6423(97)
00029-4.

[31] S. L. Peyton Jones, A. Tolmach, and T. Hoare. Playing by
the rules: rewriting as a practical optimisation technique in GHC.
In 2001 Haskell Workshop. ACM SIGPLAN, September 2001.
URL http://research.microsoft.com/apps/pubs/default.
aspx?id=74064.

[32] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1(2):125–159, 1975. doi: 10.1016/
0304-3975(75)90017-1.

[33] J.-C. Raoult and J. Vuillemin. Operational and semantic equivalence
between recursive programs. Journal of the Association for Computing
Machinery, 27(4):772–796, Oct. 1980. ISSN 0004-5411. doi: 10.1145/
322217.322229. URL http://doi.acm.org/10.1145/322217.
322229.

[34] J. C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3-4):233–248, 1993.

[35] J. C. Reynolds. User-defined types and procedural data structures as
complementary approaches to data abstraction. In C. A. Gunter and J. C.
Mitchell, editors, Theoretical Aspects of Object-oriented Programming,
pages 13–23. MIT Press, Cambridge, MA, USA, 1994. ISBN 0-262-
07155-X. URL http://dl.acm.org/citation.cfm?id=186677.
186680.

[36] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397,

Dec. 1998. ISSN 1388-3690. doi: 10.1023/A:1010027404223. URL
http://dx.doi.org/10.1023/A:1010027404223.

[37] A. Sabry and M. Felleisen. Reasoning about programs in continuation-
passing style. In LISP and Functional Programming, pages 288–298,
1992. doi: 10.1145/141471.141563. URL http://doi.acm.org/10.
1145/141471.141563.

[38] A. L. M. Santos. Compilation by Transformation in Non-Strict
Functional Languages. PhD thesis, University of Glasgow, 1995.

[39] T. Standish, D. Harriman, D. Kibler, and J. Neighbors. The Irvine
program transformation catalogue. 1976.

[40] G. L. Steele, Jr. RABBIT: A compiler for SCHEME. Technical
Report AITR-474, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1978.

[41] G. L. Steele, Jr. and G. J. Sussman. Lambda: The ultimate declarative.
Memo AIM-379, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1976.

[42] G. L. Steele, Jr. and G. J. Sussman. Lambda: The ultimate imperative.
Memo AIM-353, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1976.

[43] G. J. Sussman and G. L. Steele, Jr. SCHEME: An interpreter for
untyped lambda-calculus. Memo AIM-349, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, 1975.

[44] P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of
the Eighth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’03, pages 189–201, New York, NY, USA, 2003.
ACM. ISBN 1-58113-756-7. doi: 10.1145/944705.944723. URL
http://doi.acm.org/10.1145/944705.944723.

[45] P. Wadler. Propositions as types. Communications of the ACM, 58(12):
75–84, Nov. 2015. ISSN 0001-0782. doi: 10.1145/2699407. URL
http://doi.acm.org/10.1145/2699407.

[46] N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-
Matching. PhD thesis, Carnegie Mellon University, 2009.

http://dl.acm.org/citation.cfm?id=645420.652528
http://dl.acm.org/citation.cfm?id=645420.652528
http://dx.doi.org/10.1016/S0167-6423(97)00029-4
http://dx.doi.org/10.1016/S0167-6423(97)00029-4
http://research.microsoft.com/apps/pubs/default.aspx?id=74064
http://research.microsoft.com/apps/pubs/default.aspx?id=74064
http://doi.acm.org/10.1145/322217.322229
http://doi.acm.org/10.1145/322217.322229
http://dl.acm.org/citation.cfm?id=186677.186680
http://dl.acm.org/citation.cfm?id=186677.186680
http://dx.doi.org/10.1023/A:1010027404223
http://doi.acm.org/10.1145/141471.141563
http://doi.acm.org/10.1145/141471.141563
http://doi.acm.org/10.1145/944705.944723
http://doi.acm.org/10.1145/2699407

A. Benchmarks
Tables 1 and 2 show the results of the spectral and real NoFib
tests for GHC 7.8.4 modified to use the new Sequent Core version
of the simplifier, versus the baseline GHC 7.8.4. There are wins
and losses; the losses are relatively few but serious (most notably
spectral/rewrite and real/cacheprof).

It is difficult to glean much from the details, largely because
rewriting the simplifier with a new intermediate representation is
such a drastic change. We hope to use the Sequent Core experience
to make more modest changes to the original simplifier, for which it
should be easier to tease out the effects of particular changes.

B. Contification Algorithm
The algorithm A is shown in Figure 9. At each command or
continuation, the traversal produces a triple (F ,G, C) of a free set
F , a good set G, and a contifiable set C, with G ⊆ F and C∩F = ∅.
The free set contains the variables occurring free in the command;
the good set contains just the “good” ones, that is, those variables
that only occur free as tail-called functions; and the contifiable set
contains the functions marked for contification. We assume here
that all binders are distinct.10 For terms, the procedure is the same,
except that onlyF and C are returned—since terms are continuation-
closed, no function occurring free in a term can be contified, so the
good set for a term is always empty.

At each binding let f = v in c, ifA JcK = (F ,G, C), we contify
f (that is, add it to C) if and only if f ∈ G. For recursive bindings,
the procedure is the same, only of course the combined analysis for
the body and the definitions must be used.

The definition of ⊕ says that, in an expression with two subex-
pressions, the good variables are those that are

• good on the left and absent on the right, or
• good on the right and absent on the left, or
• good on both sides.

Alternatively, we could track the free set and the bad set, and
then ⊕ would simply take the unions. Using the good set makes the
algoritm more flexible, however; many extensions require tracking
something about the calls to each function, such as the arity, which
is easy if the good set is represented as the domain of a finite map.

C. Proof of Correspondence (Proposition 1)
The proof is by bisimulation. After establishing some reduction
relations and their algebraic properties, we will define a readback
function, use it to define a bisimulation, then prove that the bisimu-
lation preserves termination.

C.1 Reduction
We define → as the compatible closure of 7→ along with one
additional rule. Note that while 7→ only relates commands, →
extends to terms and continuations as well.

The new rule is a form of η-rule:

µret.〈v || ret〉 → v (µη)

Applying the µη-rule does not affect observable behavior, but it
will be necessary for relating the two calculi. Note that it is never
a standard reduction (unless it happens to coincide with a standard
µ-reduction).

We now call 7→ standard reduction. Accordingly,→ includes
non-standard reduction; to denote non-standard reduction specifi-
cally, we write . Hence→ is the disjoint union of 7→ and .

10 The actual code annotates the binders rather than gathering a set, so it
avoids making this assumption.

Test Size Allocs Time Elapsed Memory
ansi -0.0% -11.8% 0.000 0.000 0.0%
atom -0.0% 0.0% +0.9% +0.9% 0.0%
awards 0.0% 0.0% 0.000 0.000 0.0%
banner 0.0% 0.0% 0.000 0.000 0.0%
boyer +0.0% 0.0% 0.020 0.020 0.0%
boyer2 -0.3% +5.2% 0.000 0.000 0.0%
calendar -0.0% -0.6% 0.000 0.000 0.0%
cichelli +0.2% +2.3% 0.040 0.040 0.0%
circsim +0.0% -0.1% -5.5% -5.5% +5.9%
clausify +0.0% 0.0% 0.020 0.020 0.0%
comp_lab_zift -0.0% +0.1% 0.100 0.100 +14.3%
constraints -0.0% -2.9% -6.3% -6.2% 0.0%
cryptarithm1 0.0% 0.0% -0.7% -0.7% 0.0%
cryptarithm2 -0.2% +0.0% 0.010 0.010 0.0%
cse -0.1% -1.0% 0.000 0.000 0.0%
eliza -0.0% -1.8% 0.000 0.000 0.0%
event -0.0% -2.2% 0.074 0.074 0.0%
expert +0.0% -0.6% 0.000 0.000 0.0%
fft +0.1% +1.3% 0.020 0.020 -10.0%
fft2 -0.0% +0.1% 0.030 0.030 0.0%
fibheaps 0.0% 0.0% 0.020 0.020 0.0%
fish 0.0% 0.0% 0.010 0.010 0.0%
gcd -0.0% 0.0% 0.016 0.016 0.0%
genfft -0.0% -0.0% 0.020 0.020 0.0%
ida +0.0% +1.0% 0.050 0.050 0.0%
integer +0.0% 0.0% -0.7% -0.9% 0.0%
knights 0.0% -0.0% 0.000 0.000 0.0%
lcss -0.0% -0.0% -2.6% -2.6% 0.0%
life -0.0% -0.0% 0.140 0.140 0.0%
listcompr +0.0% +0.0% 0.050 0.050 0.0%
listcopy +0.0% +0.0% 0.050 0.050 0.0%
mandel -0.0% -0.0% 0.030 0.030 0.0%
mandel2 -0.0% -0.0% 0.000 0.000 0.0%
minimax +0.0% +0.0% 0.000 0.000 0.0%
multiplier +0.0% -3.1% 0.070 0.070 0.0%
nucleic2 0.0% 0.0% 0.030 0.030 0.0%
para +0.3% -2.7% 0.162 0.162 0.0%
parstof +0.0% -0.3% 0.000 0.000 0.0%
power +0.1% -0.0% -3.1% -3.9% 0.0%
pretty -0.0% +0.0% 0.000 0.000 0.0%
primetest -0.0% -0.0% 0.056 0.056 0.0%
puzzle -0.0% -17.1% 0.082 0.082 0.0%
rewrite +0.0% +19.2% 0.010 0.010 0.0%
scc 0.0% 0.0% 0.000 0.000 0.0%
sched 0.0% 0.0% 0.010 0.010 0.0%
simple -0.6% -4.9% 0.150 0.150 +3.4%
solid -0.0% 0.0% 0.080 0.080 0.0%
sorting 0.0% 0.0% 0.000 0.000 0.0%
sphere +0.0% 0.0% 0.022 0.022 0.0%
transform -0.2% -0.6% 0.198 0.200 0.0%
treejoin +0.0% 0.0% 0.090 0.090 0.0%
typecheck -0.0% -0.0% 0.132 0.134 0.0%
wang -0.0% 0.0% 0.064 0.064 +5.0%
wave4main +0.0% -0.0% 0.130 0.130 0.0%
Min -0.6% -17.1% -6.3% -6.2% -10.0%
Max +0.3% +19.2% +0.9% +0.9% +14.3%
Geometric Mean -0.0% -0.5% -2.6% -2.7% +0.3%

Table 1. Results for the spectral NoFib tests.

Contification analysis of terms: (F , C) = A JvK

A JxK = ({x}, ∅)
A Jλx:τ .vK = (F \ {x}, C) where (F , C) = A JvK
A JΛa:κ.vK = A JvK

A JK (#»σ , #»v)K = (
⋃

#»F ,
⋃

#»C) where
»

(F , C) =
»

A JvK

A Jµret.cK = (F , C) where (F , ∅, C) = A JcK

Contification analysis of continuations: (F ,G, C) = A JkK

A Jv · kK = (F , ∅, C)⊕A JkK where (F , C) = A JvK
A Jσ · kK = A JkK
A JretK = (∅, ∅, ∅)

A
r
case of

»

alt
z

=
⊕ # »

A JaltK

Contification analysis of commands: (F ,G, C) = A JcK

A Jlet bind in cK = A JbindK
AJcK

A J〈v || k〉K = (F ,G, C)⊕A JkK where (F , C) = A JvK

G =

{
{f} if v = f, k =

#»

v′ · ret, |
#»

v′ | = arity(f)

∅ otherwise

A Jjump j #»σ #»v K = (
⋃

#»F ,
⋃

#»C) where
»

(F , C) =
»

A JvK

Contification analysis of bindings: (F ,G, C) = A JbindK
(Fb,Gb,Cb)

A Jf :τ = vK
(Fb,Gb,Cb)

= (F ′ \ {f},G′ \ {f}, C′′)

where (F , C) = A JvK

(F ′,G′, C′) = (F , ∅, C)⊕ (Fb,Gb, Cb)
C′′ = C′ ∪ ({f} ∩ Gb)

A Jj:τ = µ̃[# »a:κ, # »x:σ].cK
(Fb,Gb,Cb)

= (F \ { #»x },G \ { #»x }, C)⊕ (Fb,Gb, Cb)

where (F ,G, C) = A JcK

A
r
rec

{
»

f :τ = v
}z

(Fb,Gb,Cb)
= (F ′′ \ { #»

f },G′ \ { #»

f }, C′′′)

where
»

(F , C) =
»

A JvK

(F ′′,G′, C′′) = (
⋃

#»F , ∅,
⋃

#»C)⊕ (Fb,Gb, Cb)

C′′′ =

{
C′′ ∪ G′ if { #»

f } ⊆ G′

C′′ otherwise

A
r
rec

{
»

j:τ = µ̃[# »a:κ, # »x:σ].c
}z

(Fb,Gb,Cb)
= (F ′,G′, C′)

where
»

(F ,G, C) =
»

A JcK

(F ′,G′, C′) =
(⊕ # »

(F \ { #»x },G \ { #»x }, C)
)
⊕ (Fb,Gb, Cb)

Contification analysis of alternatives: (F ,G, C) = A JaltK

A Jx:τ → cK = (F \ {x},G \ {x}, C) where (F ,G, C) = A JcK
A JK (# »a:κ, # »x:τ)→ cK = (F \ { #»x },G \ { #»x }, C) where (F ,G, C) = A JcK

Combination of contification analyses: (F ′,G′, C′) = (F1,G1, C1)⊕ (F2,G2, C2)

(F1,G1, C1)⊕ (F2,G2, C2) = (F1 ∪ F2, (G1 \ F2) ∪ (G2 \ F1) ∪ (G1 ∩ G2), C1 ∪ C2)

Figure 9. The analysis phase A of the contification pass, including the operator ⊕ for combining analyses.

Test Size Allocs Time Elapsed Memory
anna -0.1% +1.2% 0.152 0.152 0.0%
bspt +1.8% 0.0% 0.020 0.020 0.0%
cacheprof +0.5% +19.7% +10.9% +10.9% +4.5%
compress +0.1% 0.0% -0.6% -0.6% 0.0%
compress2 -0.2% 0.0% +0.5% +0.5% 0.0%
fem +0.1% -0.1% 0.046 0.046 0.0%
fluid +0.4% +0.1% 0.010 0.010 0.0%
fulsom +0.7% -8.8% -4.9% -4.9% -7.1%
gamteb -0.1% +0.1% 0.056 0.056 0.0%
gg -0.1% +2.3% 0.028 0.028 0.0%
grep +0.0% 0.0% 0.000 0.000 0.0%
hidden -0.2% -0.9% +0.7% +1.0% 0.0%
hpg -0.1% -0.2% 0.132 0.132 0.0%
infer -0.5% -0.1% 0.100 0.100 0.0%
lift -0.2% -1.2% 0.000 0.000 0.0%
maillist +0.0% -0.0% 0.060 0.060 +2.6%
mkhprog -0.1% -0.0% 0.000 0.000 0.0%
parser -0.2% +2.1% 0.050 0.050 0.0%
pic -0.0% -0.7% 0.010 0.010 0.0%
prolog +0.2% +0.3% 0.000 0.000 0.0%
reptile +0.1% +0.0% 0.022 0.022 0.0%
rsa -0.0% -0.0% 0.010 0.010 0.0%
scs +0.2% -0.6% -0.0% -0.0% 0.0%
symalg -0.2% -0.0% 0.000 0.000 0.0%
veritas +0.4% -0.1% 0.000 0.000 0.0%
Min -0.5% -8.8% -4.9% -4.9% -7.1%
Max +1.8% +19.7% +10.9% +10.9% +4.5%
Geometric Mean +0.1% +0.4% +1.0% +1.0% -0.0%

Table 2. Results for the real NoFib tests.

To prove standardization, we will also make use of a parallel
reduction relation⇒. Parallel reduction consists of the simultaneous
reduction of some number of redexes, possibly zero, appearing in
the same term. Clearly, parallel reduction sits between reduction
and its reflexive-transitive closure:

→ ⊂⇒ ⊂→?

Finally, we have non-standard parallel reduction, , which
may contract several redexes but not the standard redex.

C.2 Algebraic Properties
We will need a few algebraic properties of the CBN calculus. Most
important is standardization (Proposition 8).

An easy property is that irreducibility is preserved by general
reduction, and unaffected by non-standard reduction:

Lemma 5. If c → c′ then c 67→ implies c′ 67→. Furthermore, if
c c′ then c 67→ iff c′ 67→.

Proof. The second property (if c c′ then c 67→ iff c′ 67→) can
be shown by cases on the possible non-standard reductions, since
a non-standard reduction never introduces or destroys a standard
redex. The first property is implied by the second because when a
command without a standard step is reduced, that reduction must
have been non-standard to begin with.

Also relatively simple is a standard substitution lemma, though
there are fine points to its statement.

Lemma 6 (Substitution). 1. If c→ c′ then c {σ/a} → c′ {σ/a}.
2. If c→ c′ then c {v/x} → c′ {v/x}.
3. If c→ c′ then c {k/ret} → c′ {k/ret}.
4. If c→ c′ then c

{
c′′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}
→?

c′
{
c′′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

.

5. If v → v′ then c {v/x} →? c {v′/x}.

c c′

d d′

?

? ?
?

Figure 10. Core of standardization proof.

6. If k → k′ then c {k/ret} →? c {k′/ret}.
7. If c′ → c′′ then c

{
c′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}
→?

c
{
c′′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

.

Proof. By mutual induction. The one subtlety is that substituting
a type, term, or continuation into a command cannot duplicate or
destroy redexes in the original command, but substituting a join
point can. Hence clauses 1–3 specify→ but clause 4 specifies→?.

Here is the crucial case of clause 4: Suppose c ≡ jump j
#»

σ′ #»

v′ .
Since c cannot take a standard reduction, the reduction must occur
in some subterm. Hence

#»

v′ →
»

v′′ and c′ ≡ jump j
#»

σ′ # »

v′′ . Now:

c
{
c′′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

≡ c′′
»{
σ′/a

} # »{
v′/x

}
→? c′′

»{
σ′/a

} # »{
v′′/x

}
(by 5)

≡ c′
{
c′′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

Parallel reduction enjoys a similar substitution lemma (in fact, it
is why parallel reduction is useful!).

Lemma 7. Let z denote any term, continuation, or command, and
likewise z′.

1. If z ⇒ z′, then z {τ/a} ⇒ z′ {τ/a}.
2. If z ⇒ z′ and v ⇒ v′, then z {v/x} ⇒ z′ {v′/x}.
3. If z ⇒ z′ and k ⇒ k′, then z {k/ret} ⇒ z′ {k/ret}.
4. If z ⇒ z′ and c⇒ c′, then z

{
c

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}
⇒

z′
{
c′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

.

Proof. Each proceeds by induction, with 4 relying on 1 and 2. We
show the crucial case in 4.

Suppose z ≡ jump j
#»

σ′ #»

v′ . Hence
»

v′ ⇒ v′′ and z′ ≡ jump j
#»

σ′ # »

v′′ .
Then:

z
{
c

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

≡ c
»{
σ′/a

} # »{
v′/x

}
⇒ c′

»{
σ′/a

} # »{
v′′/x

}
(by 1 and 2)

≡ z′
{
c′

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

Now we have the tools to prove standardization:

Proposition 8 (Standardization). If c →? c′ 67→ then c 7→? c1 67→
and c1 →? c′.

We will prove Proposition 8 in several parts. The crux is the
diagram in Fig. 10, which allows us to take any series of standard
reductions and move them upward, postponing any non-standard
reductions until later.

A direct attempt at this diagram will fail, however, as we cannot
get a footing. What holds for single reductions is:

c c′

d d′

?

?

Moving a standard reduction forward may produce extra work, so
there may be extra steps between c′ and d′; also, the non-standard
reduction may happen to be the next standard reduction, leading to
more standard steps between c and c′. But this diagram cannot be
“tiled” by induction to produce Fig. 10.

Happily, the extra work created by moving a standard reduction
forward always has a particular form—the duplicated redexes can all
be reduced in parallel. Thus we can obtain a more helpful diagram
using parallel reduction.

Lemma 9. If c⇒ d and d 7→ d′, then c 7→? c′ with c′ ⇒ d′.

c c′

d d′

?

Proof. Proceed by induction on the number of reductions in c⇒ d.
If c ≡ d, we can take c′ ≡ d and we are done.

Otherwise, consider whether c⇒ d takes the standard reduction.
If it does, we can refactor it as c 7→ c1 ⇒ d:

c c1 c′

d d′

?

Since c1 ⇒ d by fewer reductions than c ⇒ d, we can finish
using the induction hypothesis.

Otherwise, since we are not performing the standard reduction
(which is always at the top level in our language), c and d have the
same top-level form, simplifying the case analysis:

• The case where c is a jump is impossible, since then d would
have to be a jump and a jump cannot take a standard reduction.
• Suppose c ≡ letx = v in c0 and d ≡ letx = v′ in c′0

with v ⇒ v′ and c0 ⇒ c′0. Then d 7→ d′ ≡ c′0 {v′/x}. Let
c′ ≡ c0 {v/x}; then c 7→ c′, and by Lemma 7, c′ ⇒ d′.
• The case for c ≡ let j = µ̃[#»a , #»x].d0 in c0 is similar.
• Finally, we have that c ≡ 〈v || k〉 and d ≡ 〈v′ || k′〉 with v ⇒ v′

and k ⇒ k′. Continue by case analysis on v:
The case v ≡ x is impossible since 〈x || k′〉 cannot take a
standard reduction.
If v ≡ µret.c0, we must account for a possible µη-reduction.
In this case, c0 ≡ 〈v0 || ret〉 and v0 ⇒ v′.

v0 k c ≡〈µret. 〈v0 || ret〉 || k〉 〈v0 || k〉

v′ k′ d ≡〈v′ || k′〉 d′

Since we have removed one reduction, we can use the
induction hypothesis to finish:

c ≡〈µret. 〈v0 || ret〉 || k〉 〈v0 || k〉 c′

d ≡〈v′ || k′〉 d′

?

If there is no µη-reduction in v, then v′ ≡ µret.c′0 with
c0 ⇒ c′0:

c0 k c ≡〈µret.c0 || k〉 c0 {k/ret}

c′0 k′ d ≡〈µret.c′0 || k′〉 c′0 {k′/ret}

Here we take c′ ≡ c0 {k/ret} and finish by Lemma 7.
In the other cases, v is a WHNF, so k is a matching con-
tinuation (that is, not ret and not a mismatched case). We
show the case for v ≡ λx.v0; the Λ-case is simpler, and the
constructor case is more complex but no more illuminating.

v0, v1, k0 〈λx.v0 || v1 · k0〉 〈v0 {v1/x} || k0〉

v′0, v
′
1, k

′
0 〈λx.v′0 || v′1 · k0〉 〈v′0 {v′1/x} || k′0〉

As before, along the right side we use Lemma 7.

Now we need to reconcile Lemma 9 with Fig. 10. First, we
can break down⇒ into standard reduction (7→) followed by non-
standard parallel reduction ():

Lemma 10. If c⇒ c′ then c 7→? c′.

Proof. By induction on the number of reductions taken by the
derivation of c⇒ c′. If c ≡ c′, we are done. Otherwise, if c⇒ c′

does not take the standard reduction, we are again done. Finally,
if it does take the standard reduction, then c 7→ c1 ⇒ c′ where
c1 ⇒ c′ takes fewer reductions, so we finish using the induction
hypothesis.

Now we can move Lemma 9 closer by referring to non-standard
(parallel) reduction:

Lemma 11. If c d and d 7→ d′, then c 7→? c′ with c′ d′.

c c′

d d′

?

Proof. Immediate from Lemmas 9 and 10.

This is the diagram that we can “tile” to produce Fig. 10.

Lemma 12. If c ? d and d 7→? d′, then c 7→? c′ with c′ ? d′

(see Fig. 10).

Proof. Follows from Lemma 11. By induction, its diagram can be
“tiled horizontally” to give:

c c′

d d′

?

?

Now that the top and bottom match, we can “tile vertically”:

c c′

d d′

?

? ?
?

But then ?= ?, and we’re done.

Now we are ready to prove standardization.

Proof of Proposition 8.

c c1 67→

c′ 67→

?

? ?

Proceed by induction on c →? c′. If there are no standard
reductions in the sequence, then we can take c1 ≡ c and we’re
done by Lemma 5.

Thus assume there is at least one standard reduction; isolating
the first one, we have c ? d 7→ d′ →? c′.

c

d d′

c′ 67→

?
?

?

We can fill in the upper-left corner by Lemma 12 and the lower-right
corner by the induction hypothesis:

c

d d′ 67→

c′ 67→

?
?

?

?
?

? ?

Finally, applying Lemma 12 again, along with Lemma 5, gives us
our c1:

c c1 67→

d d′ 67→

c′ 67→

?
?

?

?

?

?
?

? ?

We will also have occasion to move a standard reduction after a
non-standard one:

Lemma 13. If c 7→ c′ and c→? d, then d 7→0/1 d′ with c′ →? d′.

c c′

d d′
? ?

0/1

Proof. Proceed by induction on c→? d. If c ≡ d, then trivially we
take d′ ≡ c′.

Now suppose c → c1 →? d. By the induction hypothesis, if
we can find c′1 with c′ →? c′1 and c1 7→ c′1, then we get d′ with
d 7→0/1 d′ and c′1 →? d′ and we’re done.

c c′

c1 c′1

d d′

?

? ?
0/1

Alternatively, if we find that c′1 ≡ c1 (i.e., that c′ →? c1), then
we can pick d′ ≡ d as well.

Now, if in fact c 7→ c1, then we must have that c′ ≡ c1 so
we take c′1 ≡ c1. Otherwise, c → c1 by a non-standard reduction.
Considering the cases for c 7→ c1, none can be interfered with
by a reduction in a subterm, and such a reduction can always be
performed afterward (though it may be replicated if the subterm is
a substituend in the right-hand side of the rule). Thus the standard
reduction can still take place in c1, with the nonstandard reduction
postponed to part of c′ →? c′1.

C.3 Readback Function
To show the correspondence between the call-by-name and call-
by-need calculi, we will use a bisimulation. Key to defining the
bisimulation will be our readback function, defined in Fig. 11.

The key property of the readback is this:

Lemma 14. If

〈H; J ,R; c〉 〈H′; J ′,R′; c′〉,

then

U(〈H; J ,R; c〉)→? U(〈H′; J ′,R′; c′〉).

First, we will need a simple fact about reduction:

Lemma 15. If c→ c′, then

1. UH(H)(c)→ UH(H)(c′)
2. UJ(J)(c)→? UJ(J)(c′)
3. UR(R)(c)→? UR(R)(c′)

Proof. Parts 1 and 2 are immediate from Lemma 6, since UH and
UJ produce substitutions.

For part 3, note that UR(R)(c) always has the form cσ for
some substitution σ (which may include c in a substituend), so the
substitution argument still applies—except that multiple reductions
may be necessary since c may be copied.

Proof of Lemma 14. By case analysis on the reduction:

• (β→)

U(〈H; J ,R; 〈λx:τ .v1 || v2 · k〉〉)
≡ UH(H)(UR(R)(UJ(J)(〈λx:τ .v1 || v2 · k〉)))
→? UH(H)(UR(R)(UJ(J)(〈v1 {v2/x} || k〉)))
≡ (UH(H) ◦ {v2/x})(UR(R)(UJ(J)(〈v1 || k〉)))
≡ U(〈H, x = v2; J ,R; 〈v1 || k〉〉)

• (β∀)

U(〈H; J ,R; 〈Λa:κ.v || τ · k〉〉)
≡ UH(H)(UR(R)(UJ(J)(〈Λa:κ.v || τ · k〉)))
→? UH(H)(UR(R)(UJ(J)(〈v {τ/a} || k〉)))
≡ U(〈H; J ,R; 〈v {τ/a} || k〉〉)

• Similarly for casecons and casedef .

U(〈H; J ,R; c〉) = UH(H)(UR(R)(UJ(J)(c)))

UH(ε) = id

UH(H, x = v) = UH(H) ◦ {v/x}
UH(H, x = •) = UH(H)

UJ(ε) = id

UJ(J , j = µ̃[# »a:κ # »x:τ].c) = UJ(J) ◦
{
c

»

{τ/a}
»

{v/x}/jump j #»τ #»v
}

UR(ε)(c) = id

UR((k,J) : R)(c) = UR(R)(c {UJ(J)(k)/ret})
UR(updx : R)(c) = (UR(R)(c)) {µret.c/x}

Figure 11. Readback function.

• (µ)

U(〈H; J ,R; 〈µret.c || k〉〉)
≡ UH(H)(UR(R)(UJ(J)(〈µret.c || k〉)))
≡ UH(H)(UR(R)(〈µret.c || UJ(J)(k)〉))
→? UH(H)(UR(R)(c {UJ(J)(k)/ret}))
≡ UH(H)(UR((k,J) : R)(c))

≡ UH(H)(UR((k,J) : R)(UJ(ε)(c)))

≡ U(〈H; ε, (k,J) : R; c〉)

Note that in pushing the substitution UJ(J) into the continua-
tion of the command above, specifically:

UJ(J)(〈µret.c || k〉) ≡ 〈µret.c || UJ(J)(k)〉

we exploit the fact that the term µret.c must be continuation-
closed, so that it is unaffected by UJ(J).
• (jump)

Assuming that

j = µ̃[# »a:κ, # »x:τ].c ∈ J ,

U(〈H; J ,R; jump j #»σ #»v 〉)
≡ UH(H)(UR(R)(UJ(J)(jump j #»σ #»v)))

≡ UH(H)(UR(R)(UJ(J)(c
»

{σ/a}
»

{v/x})))

≡ (UH(H) ◦
»

{v/x})(UR(R)(UJ(J)(c
»

{σ/a})))

≡ U(〈H, # »x = v ; J ,R; c
»

{σ/a}〉)

• (lookup)
Assuming that

x = V ∈ H,

U(〈H; J ,R; 〈x || k〉〉)
≡ UH(H)(UR(R)(UJ(J)(〈x || k〉)))
≡ UH(H)(UR(R)(UJ(J)(〈V || k〉)))
≡ U(〈H; J ,R; 〈V || k〉〉)

• (lazysubst)
Assuming that

x = K (#»σ , #»v) ∈ H,

U(〈H; J ,R; 〈x || k〉〉)
≡ UH(H)(UR(R)(UJ(J)(〈x || k〉)))
≡ UH(H, x = K (#»σ , #»v))

(UR(R)(UJ(J)(〈K (#»σ , #»v) || k〉)))
≡ (UH(H) ◦ {K (#»σ , #»v)/x})

(UR(R)(UJ(J)(〈K (#»σ , #»v) || k〉)))

≡ (UH(H) ◦ {K (#»σ , #»v)/x} ◦
»

{v/y})
(UR(R)(UJ(J)(〈K (#»σ , #»y) || k〉)))

≡ (UH(H) ◦
»

{v/y} ◦ {K (#»σ , #»y)/x})
(UR(R)(UJ(J)(〈K (#»σ , #»y) || k〉)))

≡ 〈H, # »y = v, x = K (#»σ , #»y); J ,R; 〈K (#»σ , #»y) || k〉〉
• (force)

Assuming that
x = µret.c ∈ H,

U(〈H; J ,R; 〈x || k〉〉)
≡ UH(H)(UR(R)(UJ(J)(〈x || k〉)))
≡ UH(H)(UR(R)(UJ(J)(〈µret.c || k〉)))
≡ UH(H)(UR(R)(〈µret.c || UJ(J)(k)〉))
→? UH(H)(UR(R)(c {UJ(J)(k)/ret}))
≡ UH(H)(UR((k,J) : R)(c))

≡ UH(H, x = •, x = µret.c)(UR((k,J) : R)(c))

≡ UH(H, x = •)((UR((k,J) : R)(c)) {µret.c/x})
≡ UH(H, x = •)(UR(updx : (k,J) : R)(c))

≡ UH(H, x = •)(UR(updx : (k,J) : R)(UJ(ε)(c)))

≡ U(〈H, x = •; ε,updx : (k,J) : R; c〉)
• (update)

U(〈H; J ,updx : R; 〈W || ret〉〉)
≡ UH(H)(UR(updx : R)(UJ(J)(〈W || ret〉)))
≡ UH(H)(UR(R)(UJ(J)(〈W || ret〉)) {µret.〈W || ret〉/x})
→? UH(H)(UR(R)(UJ(J)(〈W || ret〉)) {W/x})
≡ (UH(H) ◦ {W/x})(UR(R)(UJ(J)(〈W || ret〉))
≡ U(〈H, x = W ; J ,R; 〈W || ret〉〉)

• (ret)

U(〈H; J , (k′,J ′) : R; 〈W || ret〉〉)
≡ UH(H)(UR(R)(UJ(J)(〈W || ret〉))

{
UJ(J ′)(k′)/ret

}
)

≡ UH(H)(UR(R)(
〈
W
∣∣∣∣UJ(J ′)(k′)

〉
)

≡ UH(H)(UR(R)(UJ(J ′)(
〈
W
∣∣∣∣ k′〉))

≡ U(〈H; J ′,R; 〈W || k′〉〉)
Note that in discarding UJ(J) above, we exploit the fact thatW
is continuation-closed, and hence the substitution UJ(J) was
accomplishing nothing. Similarly, W is unaffected by UJ(J ′),
so we can move the latter out.
• (letval)

U(〈H; J ,R; letx = v in c〉)
≡ UH(H)(UR(R)(UJ(J)(letx = v in c)))

→? UH(H)(UR(R)(UJ(J)(c {v/x})))
≡ (UH(H) ◦ {v/x})(UR(R)(UJ(J)(c)))

≡ U(〈H, x = v; J ,R; c〉)
• Similarly for letcont .

We will also require that the readback respects termination:

Lemma 16. If 〈H; J ,R; c〉 6 , then U(〈H; J ,R; c〉) 67→.

Proof. There are two forms of irreducible state in the call-by-need
semantics: a missing case alternative and a WHNF passed to ret
in an empty stack. The former reads back as a similarly stuck term,
and the latter reads back as a WHNF.

C.4 Bisimulation
Now we use the readback to define our bisimulation:

Definition 17. Let ∼ relate call-by-name terms to call-by-need
states, such that c ∼ S when c→? U(S).

Lemma 18 (Bisimulation). Let c ∼ S.

1. If c 7→ c′, then S ? S ′ with c′ ∼ S ′.
2. If S S ′, then c 7→? c′ with c′ ∼ S ′.

c c′

d d′

S S ′

? ?

U U
?

c c′

d d′

S S ′

?

? ?

U U

Proof. 2 is a corollary of Lemma 14; we simply take c′ ≡ c so that
we get c ≡ c′ →? d→? d′.11

For 1, suppose c ∼ S and c 7→ c′. By definition of ∼, we have
c→? d ≡ U(S):

c c′

d

S

?

U

11 Allowing c 7→? c′ is not necessary here, but it is pro forma for a
bisimulation.

By Lemma 13, we have d 7→0/1 d′ ←? c′:

c c′

d d′

S

? ?

U

0/1

If d ≡ d′, then we can pick S ′ ≡ S and we’re done. Otherwise,
assume d 7→ d′. It will suffice to show that S ? S ′ with
U(S ′) ≡ d′:

c c′

d d′

S S ′

? ?

U U
?

As noted before,U produces a substitution—U(〈H; J ,R; c〉) ≡
cσ for some σ. In general, for a substitution σ, if cσ 7→ c′σ, then at
least one of the following is true:

1. c ≡ 〈v || k〉 7→ c′.
2. c ≡ jump j #»σ #»v and j ∈ domσ.
3. c ≡ 〈v || ret〉 and ret ∈ domσ.
4. c ≡ 〈x || k〉 and x ∈ domσ.

The last three cases may apply multiple times, but not infinitely
many as bindings are not recursive (each substitution reduces the
size of the context). Eventually we must land on case 1. Thus we
may proceed by induction on the number of substitutions required
to expose a redex.

In case 1, we have c ≡ 〈v || k〉 7→ c′. This means that S ≡
〈H; J ,R; 〈v || k〉〉, and the substitution produced was not crucial
to forming the redex. Therefore one of the “external” reduction
rules—namely β→, β∀, casecons , casedef , µ, letval , and letcont—
must apply; each of them makes precisely the same substitutions
as a corresponding call-by-name rule, only delaying some work by
adding toH, J , orR.

In case 2, the jump rule applies, and we apply the induction
hypothesis. Similarly, case 3 is covered by some number of updates
(each of which consumes an update frame) followed by a ret, and
case 4 is covered by one of lookup, lazysubst, and force.

Lemma 19 (Bisimulation respects termination). Let c ∼ S.

1. If c 67→, then S ?6 .
2. If S 6 , then c 7→?67→.

Proof. 1. By Lemma 5, U(S) 67→. From there, the case analysis
is similar to that for Lemma 18, as internal reductions perform
whatever substitutions are necessary for the stuck command to
appear.

2. We know that c→? U(S). By Lemma 16, we have that U(S) 67→;
then the result holds by standardization (Proposition 8).

The proposition is now reduced to a corollary:

Proof of Proposition 1. Since c ∼ 〈ε; ε, ε; c〉, both directions fol-
low directly from Lemmas 18 and 19 by induction on the reduction
sequence.

D. Proof of Type Safety (Proposition 2)
As is typical when proving type safety, we will require a lemma
dealing with substitution and typing.

Lemma 20 (Substitution). 1. If Γ ` τ : κ, then:
(a) If Γ, a : κ ` σ : κ′, then Γ {τ/a} ` σ {τ/a} : κ′.
(b) If Γ, a : κ ` v : σ, then Γ {τ/a} ` v {τ/a} : σ {τ/a}.
(c) If Γ, a : κ | k : σ ` ∆, then Γ {τ/a} | k {τ/a} :

σ {τ/a} ` ∆ {τ/a}.
(d) If c : (Γ, a : κ ` ∆), then c {τ/a} : (Γ {τ/a} `

∆ {τ/a}).
2. If Γ ` v : τ , then:

(a) If Γ, x : τ ` v′ : σ, then Γ ` v′ {v/x} : σ.
(b) If Γ, x : τ | k : σ ` ∆, then Γ | k {v/x} : σ ` ∆.
(c) If c : (Γ, x : τ ` ∆), then c {v/x} : (Γ ` ∆).
(d) For any k, v ≡ v {k/ret}.
(e) For any c and j, v ≡ v

{
c

»

{σ/a}
»

{v′/x}/jump j #»σ
#»

v′
}

.

3. If Γ | k : τ ` ∆, ret : σ, then:
(a) If Γ | k′ : σ′ ` ∆, ret : τ , then Γ | k′ {k/ret} : σ′ `

∆, ret : σ.
(b) If c : (Γ ` ∆, ret : τ), then c {k/ret} : (Γ ` ∆, ret : σ).

4. If c : (Γ, # »a : κ, # »x : τ ` ∆), then:
(a) If Γ | k : σ′ ` ∆, j : ∃ # »a:κ.(#»τ), then

Γ | k
{
c

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

: σ′ ` ∆.

(b) If c′ : (Γ ` ∆, j : ∃ # »a:κ.(#»τ)), then
c′
{
c

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

: (Γ ` ∆).

Proof. A series of straightforward (if large) mutual inductions. 2(d)
and 2(e) are trivial since well-typed terms have no free continu-
ation variables. 4 relies on the first three to handle the structural
substitution.

For example, in 4(b), for the case where c′ ≡ jump j #»σ #»v , we
have

c′
{
c

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}
≡ c

»

{σ/a}
»

{v/x}

The result then follows by (repeated applications of) 1(d) and
2(c).

Proof of Proposition 2. 1. A simple case analysis on c:
• If c is a let, one of the let rules applies.
• c cannot be a jump because its context has no join variables.
• Suppose c ≡ 〈v || k〉. Then v is not a variable since it is

closed. If it is a µ-abstraction, we can reduce no matter what
k is. Otherwise, v is a WHNF; if k is ret, we are done, and
otherwise either we can reduce or k is a stuck case.

2. An easy case analysis, applying Lemma 20 in each case.

E. Proof of Round-Trip Equivalence
(Proposition 3)

E.1 Equational Reasoning
As is standard, we will avoid proving observational equivalence
directly and instead rely on equational reasoning. To this end, we
define equality in Sequent Core (=) as the reflexive-transitive-
symmetric closure of→ as defined in Section C.1. Note that the
reduction theory of Sequent Core is confluent (here z and z′ may be
terms, continuations, or commands).

Proposition 21 (Confluence). If z1 ←? z →? z2 then there is a z′

such that z1 →? z′ ←? z2.

E ∈ EvalCxt ::= � | E e | caseE of
»

alt

W ∈WHNF ::= λx:τ .e | Λa:κ.e | x | K #»σ #»e

(λx:τ .e) e′ 7→ e
{
e′/x

}
(Λa:κ.e) σ 7→ e {σ/a}

caseK #»σ #»e of
»

alt 7→ e′
»

{σ/b}
»

{e/x} K
»

b:κ # »x:τ → e′ ∈ # »

alt

caseW of
»

alt 7→ e′ {W/x} x→ e′ ∈ # »

alt

letx:τ = e in e′ 7→ e′ {e/x}
E[e] 7→ E[e′] e 7→ e′

Figure 12. Call-by-name operational semantics for Core

Proof. All reduction rules are left-linear, and there are no critical
pairs. In particular, the only overlapping redexes are between µ
reduction and µη reduction, but they lead to exactly the same result:

〈µret. 〈v || ret〉 || k〉 → 〈v || k〉
It then follows that the parallel reduction relation also defined in
Section C.1 has the diamond property:

z

z1 z2

z′

And thus the single-step reduction relation is confluent.

Standardization (Proposition 8) and confluence (Proposition 21)
then give us license to use equational reasoning to prove observa-
tional equivalence:

Proposition 22. If z = z′, then z ∼= z′.

Proof. Suppose z = z′ and, without loss of generality for arbitrary
C, C[z] 7→? c 67→. To show z ∼= z′, we need to show that there is a
c′ such that C[z′] 7→? c′ 67→. By confluence (Proposition 21), z →?
z1 ←? z′, so since→ is a congruence, C[z]→?C[z1]←?C[z′].

C[z] c 67→

C[z′] C[z1]

?

?

?

Invoking confluence again, we get c →? c1 ←? C[z1]. By
Lemma 5, c1 67→. Now standardization (Proposition 8) gives us
c′ with C[z′] 7→? c′ 67→.

C[z] c 67→

C[z1] c1 67→

C[z′] c′ 67→

?

?

?
?

?

?

?

In addition to the equational reasoning about Sequent Core
terms (and commands and continuations), we will also need to
reason equationally about Core terms to establish the round-trip

equivalence. The theory for Core equations is built up in the same
way as we did for Sequent Core. In particular, we equip Core
with a standard call-by-name operational semantics (7→), with the
basic single-step rules and compatible closure under evaluation
contexts illustrated in Figure 12. For the general reduction of Core
expressions (→), we take the compatible closure of the single-
step operational relation (7→) along with the additional rule for
performing a generalized case-of-case:

E[case e′ of
»
pat → e]→ case e′ of

»

pat → E[e]

As before, we write the reflexive-transitive closures of 7→ and→
for Core as 7→? and →?, respectively, and the reflexive-transitive-
symmetric closure of→ as =. Note that other forms of commutative
conversions besides the generalized case-of-case hold up to equa-
tional reasoning due to other steps from the operational semantics,
including:

E[letx:τ = e′ in e] = letx:τ = e′ inE[e]

E[(λx:τ .e) e′] = (λx:τ .E[e]) e′

E[(Λa:κ.e) σ] = (Λa:κ.E[e]) σ

E[case e′ of
»
pat → e] = case e′ of

»

pat → E[e]

The first and the last equations in particular will be useful for
reflecting the µ-reduction of Sequent Core back into Core.

Just like with Sequent Core, the standard semantics of Core
enjoys both confluence and standardization. Therefore equational
reasoning in Core is a valid method of establishing an observational
equivalence in Core.

Proposition 23 (Confluence of Core). If e1 ←? e→? e2 then there
is an e′ such that e1 →? e′ ←? e2.

Proposition 24 (Standardization of Core). If e →? e′ 67→? then
e→? e1 67→? and e1 →? e′.

Proposition 25. If e = e′ then e ∼= e′.

Proof. The same reasoning as for Proposition 22, except for using
confluence (Proposition 23) and standardization (Proposition 24)
for Core instead of for Sequent Core.

E.2 Proof
For simplicity, we will prove round-trip equivalence for the compo-
sitional translation S rather than the administrative-free translation
Sa. In other words, we will use the following fact:

Proposition 26. S JeK = Sa JeK.

Proof. Note that the Sa transformation has two forms on expres-
sions:

Sa JeK Sa JeK k

It can be shown simultaneously that both S JeK = Sa JeK and〈
S JeK

∣∣∣∣ k〉 = Sa JeK k hold by induction on the Core expression e.
The most common difference between S JeK and Sa JeK is that S JeK
µ-reduces to Sa JeK. For example, in the case where e ≡ e1 e2, we
have:〈
S Je1 e2K

∣∣∣∣ k〉 ≡ 〈µret. 〈S Je1K
∣∣∣∣S Je2K · ret

〉 ∣∣∣∣ k〉
=
〈
S Je1K

∣∣∣∣S Je2K · k
〉

= Sa Je1K (Sa Je2K · k) (by I.H.)
≡ Sa Je1 e2K k

The only other difference to account for is the shrink operation,
which is undone by inlining the created let bindings.

To make full use of this equivalence, we need to know that D
preserves this equality, at least for programs without join points.
(Join points can be accommodated, but it would complicate the
proof.)

Lemma 27. In the join-point-free fragment:

1. If v = v′, then D JvK = D Jv′K.
2. If k = k′ and e = e′, then D JkK [e] = D Jk′K [e′].
3. If c = c′, then D JcK = D Jc′K.

Proof. By mutual induction on the derivation of =. Because the D
translation is compositional and hygienic (it does not cause escape
or capture of static variables), it suffices to show that each reduction
rule is preserved. Crucially, we must deal with how translation
interacts with continuation substitution. We claim:

D Jc {k/ret}K = D JkK [D JcK]

D
q
k′ {k/ret}

y
[e] = D JkK [D

q
k′

y
[e]]

The claim is proved by mutual induction. Important cases:

• For c ≡ 〈v || k′〉:
D

q〈
v
∣∣∣∣ k′〉 {k/ret}y

≡ D
q
k′ {k/ret}

y
[D JvK]

= D JkK [D
q
k′

y
[D JvK]] (by I.H.)

≡ D JkK [D
q〈
v
∣∣∣∣ k′〉y]

• For k′ ≡ v · k′′:
D

q
(v · k′′) {k/ret}

y
[e]

≡ D
q
v · k′′ {k/ret}

y
[e]

≡ D
q
k′′ {k/ret}

y
[�D JvK][e]

≡ D
q
k′′ {k/ret}

y
[e D JvK]

= D JkK [D
q
k′′

y
[e D JvK]] (by I.H.)

≡ D JkK [D
q
k′′

y
[�D JvK][e]]

≡ D JkK [D
q
v · k′′

y
[e]]

• For k′ ≡ case of
»
pat → c (letting p stand for a pattern, which

may be a default pattern):

D
q
case of

»
pat → c {k/ret}

y
[e]

≡ (case�of
»

pat → D JcK) {k/ret}[e]

≡ case�of
»

pat → D Jc {k/ret}K [e]

≡ case eof
»

pat → D Jc {k/ret}K

= case eof
»

pat → D JkK [D JcK] (by I.H.)

← D JkK [case eof
»

pat → D JcK]

≡ D JkK [(case�of
»

pat → D JcK)[e]]

≡ D JkK [D
q
case of

»
pat → c

y
[e]]

Note that we have made use of the extra reduction rule to perform
the case-of-case transform.

With the claim proved, we can handle µ-reduction. If c 7→ c′ by
µ, then c ≡ 〈µret.c′′ || k〉 and c′ ≡ c′′ {k/ret}. Then:

D
q〈
µret.c′′

∣∣∣∣ k〉y
≡ D JkK [D

q
µret.c′′

y
]

≡ D JkK [D
q
c′′

y
]

= D
q
c′′ {k/ret}

y

The other cases of reduction are straightforward.

Now we are prepared to show thatD
q
Sa JeK

y
= e. To show the

other direction, that Sa
q
D JvK

y
= v, we must deal with the erasure

of join points—since our direct-style language has no join points,
we translate them back as ordinary functions. We can describe the
effect this has in terms of the sequent calculus; this will simplify the
proofs greatly.

Definition 28. Define the decontification function V J−K as homo-
morphic on all syntax except

V Jj = µ̃[#»a , #»x].cK ≡ j =
»
Λa.

»

λx.µret.V JcK

and

V Jjump j #»σ #»v K ≡
〈
j
∣∣∣∣∣∣ #»σ ·

»

V JvK · ret
〉
.

Decontification is purely syntactic—it does not affect the observ-
able behavior of the program.

Lemma 29. For all v, k, and c with no free continuation variables,

1. V JvK = v,
2. V JkK = k, and
3. V JcK = c.

Proof. To investigate the effect of structural substitution versus
substitution of a decontified function, we will need a version of V
that only decontifies some variables. Hence for each set of variables
ρ, let Vρ be homomorphic on all syntax except that

Vρ
q
let j = µ̃[#»a , #»x].c in c′

y
≡

let j =
»
Λa.

»

λx.µret.Vρ JcK inVρ∪{j}
q
c′

y

and

Vρ Jjump j #»σ #»v K ≡

{〈
j
∣∣∣∣∣∣ #»σ ·

»

Vρ JvK · ret
〉
, j ∈ ρ

jump j #»σ
»

Vρ JvK , j /∈ ρ.
It is obvious that

V JzK ≡ Vfjv(z) JzK
for any term, continuation, or command z, where fjv gives the free
join variables in its argument.

Now we can characterize the interaction of V with structural
substitution. Supposing that j /∈ ρ and fjv(c′) ⊆ ρ, we claim:

Vρ JcK
{
Vρ

q
c′

y # »

{σ/a}
»

{v/x}/jump j #»σ #»v
}

=

Vρ∪{j} JcK
{

»
Λa.

»

λx.µret.Vρ
q
c′

y
/j
}

Note that we have tacitly made use of the fact that Vρ Jc′K has no
free join variables (since c′ has only ρ as free join variables) so that
µret.VρJc′K is well-typed.

The claim is proved by induction; the interesting case is this:

Vρ Jjump j #»σ #»v K
{
Vρ

q
c′

y # »

{σ/a}
»

{v/x}/jump j #»σ #»v
}

≡ (jump j #»σ
»

Vρ JvK)
{
Vρ

q
c′

y # »

{σ/a}
»

{v/x}/jump j #»σ #»v
}

≡ Vρ
q
c′

y # »

{σ/a}
»{
Vρ JvK/x

}
←?
〈

»
Λa.

»

λx.µret.Vρ
q
c′

y ∣∣∣∣∣∣ #»σ ·
»

Vρ JvK · ret
〉

≡
〈
j
∣∣∣∣∣∣ #»σ ·

»

Vρ JvK · ret
〉{

»
Λa.

»

λx.µret.Vρ
q
c′

y
/j
}

≡
〈
j
∣∣∣∣∣∣ #»σ ·

»

Vρ∪{j} JvK · ret
〉{

»
Λa.

»

λx.µret.Vρ
q
c′

y
/j
}

≡ Vρ∪{j} Jjump j #»σ #»v K
{

»
Λa.

»

λx.µret.Vρ
q
c′

y
/j
}

Note that the penultimate step makes use of the fact that the subscript
of V does not matter when operating on terms, since terms have no
free join variables.

Now we can prove the lemma by mutual induction, generalizing
each clause by replacing V with Vρ. The crucial case is in clause 3:

Vρ
q
let j = µ̃[#»a , #»x].c in c′

y

≡ let j =
»
Λa.

»

λx.µret.Vρ JcK inVρ∪{j}
q
c′

y

→ Vρ∪{j}
q
c′

y { # »
Λa.

»

λx.µret.Vρ JcK/j
}

= Vρ
q
c′

y {
Vρ JcK

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

= c′
{
c

»

{σ/a}
»

{v/x}/jump j #»σ #»v
}

(by I.H.)

← let j = µ̃[#»a , #»x].c in c′

Decontification also does not affect how the program translates
back to direct style.

Lemma 30. 1. D
q
V JvK

y
≡ D JvK.

2. D
q
V JkK

y
≡ D JkK.

3. D
q
V JcK

y
≡ D JcK.

Proof. Easy induction. For example:

D
q
V Jjump j #»σ #»v K

y

≡ D J〈j || #»σ · #»v · ret〉K
≡ j #»σ #»v

≡ D Jjump j #»σ #»v K

Now for the meat of the proof. Decontification will free us from
having to consider join points when translating to direct style and
back.

Lemma 31. 1. D
q
S JeK

y
≡ e.

2. (a) S
q
D JvK

y
= v.

(b) S
q
D JkK [e]

y
= µret.

〈
S JeK

∣∣∣∣ k〉.
(c) S

q
D JcK

y
= µret.c.

Proof. 1. By induction on e:
• All cases where e is a value are trivial.
• For e ≡ let bind in e:

D
q
S Jlet bind in eK

y

≡ D
q
µret. letS JbindK in

〈
S JeK

∣∣∣∣ ret〉y
≡ letD

q
S JbindK

y
in(D JretK)[D

q
S JeK

y
]

≡ letD
q
S JbindK

y
inD

q
S JeK

y

≡ let bind in e (by I.H.)

We used in passing the fact that D
q
S JbindK

y
≡ bind ,

which (under the induction hypothesis) is obvious in both
cases of bind .
• For e ≡ e′ e′′:
D

q
S

q
e′ e′′

yy

≡ D
q
µret.

〈
S

q
e′

y ∣∣∣∣S q
e′′

y
· ret

〉y
≡ D

q
S

q
e′′

y
· ret

y
[D

q
S

q
e′

yy
]

≡ (D JretK [�D
q
S

q
e′′

yy
])[D

q
S

q
e′

yy
]

≡ (�D
q
S

q
e′′

yy
)[D

q
S

q
e′

yy
]

≡ D
q
S

q
e′

yy
D

q
S

q
e′′

yy

≡ e′ e′′ (by I.H.)

• The case for e ≡ e′ τ is similar.
• For e ≡ case e′ of

»

alt :

D
r
S

r
case e′ of

»

alt
zz

≡ D
r
µret.

〈
S

q
e′

y ∣∣∣∣∣∣ case of # »

S JaltK
〉z

≡ D
r
case of

»

S JaltK
z

[D
q
S

q
e′

yy
]

≡ (case�of
»

D
q
S JaltK

y
)[D

q
S

q
e′

yy
]

≡ caseD
q
S

q
e′

yy
of

»

D
q
S JaltK

y

≡ case e′ of
»

alt (by I.H.)

As with bindings, it is obvious that D
q
S JaltK

y
≡ alt .

2. We can assume without loss of generality that we’re in the join-
point-free fragment of the language, since then by Lemmas 29
and 30, we will have

S
q
D JvK

y
≡ S

q
D

q
V JvK

yy
= V JvK = v

(and similar statements for continuations and commands).
Thus proceed by mutual induction on v, k, and c, assuming that
none of them contain join points.
(a) • All cases where v is a variable or WHNF are trivial.

• For v ≡ µret.c:

S
q
D Jµret.cK

y

≡ S
q
D JcK

y

= µret.c (by (c))

(b) • For k ≡ ret:

S
q
D JretK [e]

y

≡ S J�[e]K
≡ S JeK
= µret.

〈
S JeK

∣∣∣∣ ret〉
• For k ≡ v · k′:

S
q
D

q
v · k′

y
[e]

y

≡ S
q
D

q
k′

y
[�D JvK][e]

y

≡ S
q
D

q
k′

y
[e D JvK]

y

= µret.
〈
S

q
e DJvK

y ∣∣∣∣ k′〉 (by I.H.)

≡ µret.
〈
µret.

〈
S JeK

∣∣∣∣S q
D JvK

y
· ret

〉 ∣∣∣∣ k′〉
→ µret.

〈
S JeK

∣∣∣∣S q
D JvK

y
· k′
〉

= µret.
〈
S JeK

∣∣∣∣ v · k′〉 (by (a))

• The case for k ≡ τ · k′ is similar.
• For k = case of

»

alt :

S
r
D

r
case of

»

alt
z

[e]
z

≡ S
r

(case�of
»

D JaltK)[e]
z

≡ S
r
case eof

»

D JaltK
z

≡ µret.
〈
S JeK

∣∣∣∣∣∣ case of # »

S
q
D JaltK

y〉
= µret.

〈
S JeK

∣∣∣∣∣∣ case of # »

alt
〉

(by (c))

(c) • For c ≡ let bind in c:

S
q
D Jlet bind in cK

y

≡ S
q
letD JbindK inD JcK

y

≡ letS
q
D JbindK

y
inS

q
D JcK

y

= let bind in c (by (a), I.H.)

In the last step, we use the assumption that there are no
join points, and thus the binding is a value binding.
• For c ≡ 〈v || k〉:

S
q
D J〈v || k〉K

y

≡ S
q
D JkK [D JvK]

y

= µret.
〈
S

q
D JvK

y ∣∣∣∣ k〉 (by (b))

= µret. 〈v || k〉 (by (a))

• The case where c is a jump is impossible by assumption.

Proof of Proposition 3. From Proposition 26 and Lemma 31 we get
Sa

q
D JvK

y
= S

q
D JvK

y
= v. From Proposition 26, Lemma 27,

and Lemma 31 we get D
q
Sa JeK

y
= D

q
S JeK

y
= e. Finally,

from Propositions 22 and 25 we have Sa
q
D JvK

y ∼= v and
D

q
Sa JeK

y ∼= e.

F. Proof of Well-Typed Translation
(Proposition 4)

To show that the translations between Core and Sequent Core are
well-typed, we need to refer to the type system for Core, which is
illustrated in Figure 13. Notice that, except for lacking the type for
jumps, Core has exactly the same rules for determining the kinds of
types as Sequent Core from Figure 4.

We already have that Sa is equivalent to S (Proposition 26). We
can make use of this to prove type safety of Sa from S by extending
type preservation:

Proposition 32 (Preservation under =). If Γ1 ` v1 : τ1, Γ2 ` v2 :
τ2, and v1 = v2, then τ1 ≡ τ2.

Proof. Uniqueness of types (i.e., the case where v1 ≡ v2) is
obvious, since the typing rules are syntax-directed. Thus if we
find v with v1 →? v ←? v2, we are done, since type preservation
(Proposition 2)12 says that v has the same type as both v1 and v2.
But confluence gives us exactly such a v.

Proving type safety of S is now straightforward.

Lemma 33 (Type safety of S).
If Γ ` e : τ in Core, then Γ ` S JeK : τ in Sequent Core.

Proof. An easy induction on the typing derivation. For example, to
handle term application, suppose we have:

D....
Γ ` e : σ → τ

E....
Γ ` e′ : σ

Γ ` e e′ : τ
→E

12 In fact, we need to extend type preservation from 7→ to →, but this is
trivial since→ adds only the µη-rule (easily verified) and compatibility, and
our type system is compositional.

Γ ∈ Environment ::= ε | Γ, x : τ | Γ, a : κ | Γ,K : τ | Γ,T : κ

Type kinding: Γ ` τ : κ

Γ, a : κ ` a : κ
TyVar

Γ, T : κ ` T : κ
TyCon

Γ ` σ : κ′ → κ Γ ` τ : κ′

Γ ` σ τ : κ
TyApp

Γ, a : κ ` τ : ?

Γ ` ∀a:κ.τ : ?
∀

Expression typing: Γ ` e : τ

Γ, x : τ ` x : τ
Var

Γ ` bind : {Γ′} Γ,Γ′ ` e′ : σ

Γ ` let bind in e′ : σ
Let

Γ, x : τ ` e : σ

Γ ` λx:τ .e : τ → σ
→I

Γ ` e : τ → σ Γ ` e′ : τ

Γ ` e e′ : σ
→E

Γ, a : κ ` e : τ

Γ ` Λa:κ.e : ∀a:κ.τ
∀I

Γ ` e : ∀a:κ.τ Γ ` σ : κ

Γ ` e σ : τ {σ/a} ∀E

K : ∀ # »a:κ.∀
»

b:κ′ .
#»

τ ′ → T #»a
»

Γ ` σ : κ′
»

Γ ` e : τ ′
»

{τ/a}
»

{σ/b}
Γ ` K #»σ #»e : T #»τ

TKI
Γ ` e : τ

»

Γ | τ ` alt : σ

Γ ` case eof
»
alt : σ

Case

Alternative typing: Γ | τ ` e : σ

Γ, x : τ ` e : σ

Γ | τ ` x:τ → e : σ
Deflt

K : ∀
»

a:κ′ .∀ # »
b:κ. #»σ → T #»a Γ,

»
b : κ,

»

x : σ
»

{τ/a} ` e : σ′

Γ | T #»τ ` K
»
b:κ # »x:σ → e : σ′ TKE

Binding typing: Γ ` bind : {Γ′}

Γ ` e : τ

Γ ` x:τ = e : {x : τ} Name

»
Γ, # »x : τ ` e : τ

Γ ` rec { # »x:τ = e} : {Γ′} Rec

Figure 13. Type system for Core

By the induction hypothesis, we then have:

D′
....

Γ ` S JeK : σ → τ

E ′....
Γ ` S Je′K : σ

Now, noting that

S
q
e e′

y
= µret.

〈
S JeK

∣∣∣∣S q
e′

y
· ret

〉
,

we have:

D′
....

Γ ` S JeK : σ → τ

E ′....
Γ ` S Je′K : σ Γ | ret : τ ` ret : τ

Ret

Γ | S Je′K · ret : σ → τ ` ret : τ
→L〈

S JeK
∣∣∣∣S Je′K · ret

〉
: (Γ ` ret : τ)

Cut

Γ ` µret.
〈
S JeK

∣∣∣∣S Je′K · ret
〉

: τ
Act

Proving type safety of D hits a snag: while D does not change
the type of a term, it does change the type of a join point. Namely,
if a join point has type ∃ #»a .(#»σ) and its context gives ret the type τ ,
it will become a function of type ∀ #»a . #»σ → τ . Thus we define Dτ
on types, homomorphically except for

Dτ J∃ #»a .(#»σ)K ≡ ∀ #»a . #»σ → τ.

Then, we have D operate on continuation contexts:

D
r

»
j : σ, ret : τ

z
≡ Dτ

r
»
j : σ

z
≡

»

j : Dτ JσK .

Now we can state and prove the general form of type safety for
D:

Lemma 34 (Type safety of D). 1. If Γ ` v : τ , then Γ ` D JvK :
τ .

2. If Γ | k : σ ` ∆, ret : τ and Γ ` e : σ, then Γ, Dτ J∆K `
D JkK [e] : τ .

3. If c : (Γ ` ∆, ret : τ), then Γ, Dτ J∆K ` D JcK : τ .
4. If bind : (Γ | ∆′ ` Γ′ | ∆, ret : τ), then Γ, Dτ J∆K `
D JbindK : Γ′, Dτ J∆′K.

Proof. By mutual induction on the typing derivations. We show a
few cases:

• In 2, suppose we have

D....
Γ ` v : σ

E....
Γ | k : σ′ ` ∆, ret : τ

Γ | v · k : σ → σ′ ` ∆, ret : τ
→L

and also:
F....

Γ ` e : σ → σ′

By the induction hypothesis, we then have:

D′
....

Γ ` D JvK : σ

Γ ` e D JvK : σ′
....
E ′....

Γ, Dτ J∆K ` D JkK [e D JvK] : τ

Noting that

D Jv · kK [e] ≡ D JkK [e D JvK],

Γ′ ` j : ∀ # »a : κ. #»σ → τ
Var

#»D....
»

Γ ` σ′ : κ

Γ′ ` j
#»

σ′ : σ
»

{σ′/a} → τ

»∀E

#»

E ′....
»

Γ ` D JvK : σ
»

{σ′/a}

Γ′ ` j
#»

σ′ # »

D JvK : τ

»→E

Figure 14. Proof of Lemma 34, jump case

we see that E ′ is has the conclusion we require, so long as we
can prove its premise. Thus we write:

F....
Γ ` e : σ → σ′

D′
....

Γ ` D JvK : σ

Γ ` e D JvK : σ′ →E

....
E ′....

Γ, Dτ J∆K ` D JkK [e D JvK] : τ

• In 3, suppose we have:
#»D....

»

Γ ` σ′ : κ

#»E....
»

Γ ` v : σ
»

{σ′/a}

jump j
#»

σ′ #»v : (Γ ` j : ∃ # »a:κ.(#»σ),∆, ret : τ)
Jump

By the induction hypothesis, we have:
#»

E ′....
»

Γ ` D JvK : σ
»

{σ′/a}
Noting that

D
r
jump j

#»

σ′ #»v
z
≡ j

#»

σ′ # »

D JvK

and
Dτ Jj : ∃ # »a : κ.(#»σ)K ≡ j : ∀ # »a : κ. #»σ → τ,

letting
Γ′ ≡ Γ, j : ∀ # »a : κ. #»σ → τ,Dτ J∆K ,

we then have the derivation in Figure 1413.
• In 4, suppose we have:

D....
c : (Γ, # »a : κ, # »x : σ ` ∆, ret : τ)

(j = µ̃[# »a:κ, # »x:σ].c) : (Γ | j : ∃ # »a:κ.(#»σ) ` ε | ∆, ret : τ)
Label

By the induction hypothesis, we have:

D′
....

Γ, # »a : κ, # »x : σ,Dτ J∆K ` D JcK : τ

Noting that

D Jj = µ̃[# »a:κ, # »x:σ].cK ≡
(
j =Λ # »a:κ.λ # »x:σ.D JcK

)
13 The reader may notice we make implicit use of weakening in this
derivation.

and
Dτ Jj : ∃ # »a : κ.(#»σ)K ≡ j : ∀ # »a : κ. #»σ → τ,

we then have:
D′
....

Γ, # »a:κ, # »x:σ,Dτ J∆K ` D JcK : τ

Γ, # »a:κ,Dτ J∆K ` λ # »x:σ.D JcK : #»σ → τ

Γ, Dτ J∆K ` Λ # »a:κ.λ # »x:σ.D JcK : ∀ # »a:κ. #»σ → τ
→I

Γ, Dτ J∆K ` (j = Λ # »a:κ.λ # »x:σ.D JcK) : (j : ∀ # »a:κ. #»σ → τ)
∀I

Proof of Proposition 4. Immediate from Lemmas 33 and 34.

	Introduction
	Sequent Core
	Overview
	The Language
	Terms and Continuations
	Bindings and Jumps
	The Scope of Labels

	Operational Semantics
	Type System

	Translating to and from Core
	The Definitional Translation
	A More Efficient Translation
	Translating Back to Core
	Round Trips

	From Theory to Practice
	Sequent Core in GHC
	Join Points and Case-of-Case
	Losing Join Points

	Contification
	Analysis and Transformation
	Discovering Join Points
	Caveats

	Related Work
	Relation to Sequent Calculi
	CPS as an Intermediate Language
	ANF as an Intermediate Language
	Other Representations

	Reflections on Intermediate Languages
	Benchmarks
	Contification Algorithm
	Proof of Correspondence (Proposition 1)
	Reduction
	Algebraic Properties
	Readback Function
	Bisimulation

	Proof of Type Safety (Proposition 2)
	Proof of Round-Trip Equivalence (Proposition 3)
	Equational Reasoning
	Proof

	Proof of Well-Typed Translation (Proposition 4)

