
ZU064-05-FPR sequent-intro 22 March 2018 17:26

Under consideration for publication in J. Functional Programming 1

A Tutorial on Computational Classical Logic and
the Sequent Calculus

Paul Downen and Zena. M. Ariola
University of Oregon

(e-mail: {pdownen,ariola}@cs.uoregon.edu)

Abstract

We present a model of computation that heavily emphasizes the concept of duality and the interac-
tion between opposites—production interacts with consumption. The symmetry of this framework
naturally explains more complicated features of programming languages through relatively familiar
concepts. For example, binding a value to a variable is dual to manipulating the flow of control in a
program. By looking at the computational interpretation of the sequent calculus, we find a language
that lets us speak about duality, control flow, and evaluation order in programs as first-class concepts.

We begin by reviewing Gentzen’s LK sequent calculus and show how the Curry-Howard isomor-
phism still applies to give us a different basis for expressing computation. We then illustrate how the
fundamental dilemma of computation in the sequent calculus gives rise to a duality between evalu-
ation strategies: strict languages are dual to lazy languages. Finally, we discuss how the concept of
focusing, developed in the setting of proof search, is related to the idea of type safety for computation
expressed in the sequent calculus. In this regard, we compare and contrast two different methods of
focusing that have appeared in the literature, static and dynamic focusing, and illustrate how they are
two means to the same end.

1 Introduction

One of the advantages of functional programming languages is their strong foundation in
mathematics. All functional languages are, in one way or another, extensions of Church’s
(1932) λ -calculus—one of the original models of computation—as a practical program-
ming tool. And for statically typed functional languages, the mathematical roots grow even
deeper. In what’s now known as the Curry-Howard isomorphism or proofs-as-programs
paradigm (Curry et al., 1958; Howard, 1980; de Bruijn, 1968), mathematical proofs of
a theorem are algorithmic programs following a specification. This amazing harmony
can be most clearly witnessed in the one-for-one connection between the λ -calculus and
Gentzen’s (1935a) natural deduction—a system that formally lays down the rules of intu-
itionistic logic. The rules for justifying proofs in intuitionistic logic correspond exactly to
the rules for writing programs in functional languages, and simplifying proofs corresponds
to running programs. This connection has led to technical advances that flow both ways:
not only we can use mathematics to help write programs in functional languages, but we
can also write programs to help develop mathematics with proof assistants.

Natural deduction is not the only logic, however. In fact, natural deduction has a twin
sibling called the sequent calculus, born at the same time within the seminal paper of

ZU064-05-FPR sequent-intro 22 March 2018 17:26

2 P. Downen and Z. M. Ariola

Gentzen (1935a,b). Whereas the rules of natural deduction more closely mimic the reason-
ing that might occur in the minds of mathematicians, the rules of the sequent calculus
are themselves easier to reason about, for example, if we want to show that the logic
is consistent. Furthermore, unlike natural deduction’s presentation of intuitionistic logic,
Gentzen’s sequent calculus provides a native language for classical logic which admits
additional reasoning principles like proof by contradiction: if a logical statement cannot
be false, then it must be true. As a consequence, the sequent calculus clarifies and reifies
the many dualities of classical logic—“true” is dual to “false,” “and” is dual to “or”—
as pleasant symmetries baked into the very structure of its rules. Yet, even though these
two systems look very different from each other and have their own distinct advantages
and limitations, they are closely connected and give us different perspectives into the
underlying phenomena of logic. And from our point of view, the more vantage points we
have, the better.

But since the proofs-as-programs paradigm connects a logic like natural deduction to a
language like the λ -calculus, shouldn’t there also be some programming language that is
connected to the sequent calculus in the same way? As it turns out, there is (Herbelin, 1995,
2005)! When interpreted as a programming language, the natural symmetries of the se-
quent calculus reveal hidden dualities in programming—input and output, production and
consumption, construction and deconstruction, structure and pattern—and makes them a
prominent part of the computational model. Fundamentally, the sequent calculus expresses
computation as an interaction between two opposed entities: a producer representing a
program that creates information, and a consumer representing an environment or context
that observes information. Computation then occurs as a communication protocol allowing
a producer and consumer to speak to one another. This two-party, protocol-based style of
computation gives a different view of computation than the one shown by the λ -calculus.
In particular, programs in the sequent calculus can also be seen as configurations of an
abstract machine (Ariola et al., 2009), in which the evaluation context is reified as a
syntactic object that may be directly manipulated. And due to the connection between
classical logic (Griffin, 1990) and control operators like Scheme’s (Kelsey et al., 1998)
callcc or Felleisen’s (1992) C , the built-in classicality of the sequent calculus also gives an
effectful language for manipulating control flow.

The computational interpretation of the sequent calculus is not just an intellectual curios-
ity. Thanks to the relationship between natural deduction and the sequent calculus as sibling
logics (Gentzen, 1935b), the sequent calculus gives us another angle for investigating real
issues that arise in the λ -calculus and functional programming, from source languages
down to the machine. For example, in a panel discussion among leading type theorists
(Singh et al., 2011), McBride points out how the poor foundation for the computational
interpretation of co-induction is a road block for program verification and correctness,
which is in contrast to the robust and powerful treatment of induction in functional lan-
guages and proof assistants. However, the symmetries of the sequent calculus show us
how both induction and co-induction can be represented as equal and opposite reasoning
principles under the unifying umbrella of structural recursion (Downen et al., 2015) for
both ordinary recursive types and generalized algebraic datatypes. This computational
symmetry between induction and co-induction is based on the duality between data types

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 3

in functional languages and co-data types as objects (Downen and Ariola, 2014), and gives
a more robust way for proof assistants to handle recursion in infinite objects.

Moving down into the intermediate representation of programs that exists within op-
timizing compilers, the logic of the sequent calculus (Downen et al., 2016) shows how
compilers can use continuations in a more direct way with a “strategically defunction-
alized” (Reynolds, 1998) continuation-passing style (CPS). This compromise between
continuation-passing and direct style makes it possible to transfer techniques between
CPS (Appel, 1992) and static single assignment (SSA) (Cytron et al., 1991) compilers like
SML/NJ with direct style compilers like the Glasgow Haskell Compiler. For example, CPS
can faithfully represent join points in control flow (Kennedy, 2007), whereas direct style
can use arbitrary transformations expressed in terms of the original program (Peyton Jones
et al., 2001). Finally, the sequent calculus can also be interpreted as an even lower-level,
machine-like language for functional programs (Ohori, 1999), which can be used to reason
about fine details like manual memory management (Ohori, 2003). Therefore, the compu-
tational interpretation of the sequent calculus acts like a beacon illuminating murky areas
in both the design and implementation of functional languages.

1.1 Overview

The objective of this paper is to give an introduction and tutorial to the computational
interpretations of the classical sequent calculus as a programming language, with a par-
ticular focus on the dualities found in computation and their connection to functional
programming. As the broad motivation is for modeling functional programs, we assume
that the reader is already familiar with the λ -calculus, natural deduction, and the Curry-
Howard correspondence between these two formal systems. We do not, however, assume
any previous familiarity with the sequent calculus, and will first provide a review of the
sequent calculus as a system of logic before illustrating how it can also be used as a
system of computation. The goal of this tutorial is to give a basic and broadly applicable
introduction to a family of formal programming languages based on the classical sequent
calculus, for the purpose of understanding their applications to functional programming.
The reader will then be equipped to adapt existing applications of the sequent calculus (like
those mentioned previously) to new scenarios and to use the sequent calculus to discover
and develop new solutions to problems in programming languages.

There are different possible computational interpretations that can be given to the se-
quent calculus, which is partly due to two dilemmas that arise when designing a language
based on the sequent calculus. The first and most fundamental dilemma of computation
is that the evaluation of individual programs can easily have several diverging paths to
choose from that lead to different and incompatible futures. Thus, a language for the
sequent calculus needs an evaluation strategy—corresponding to the difference between
call-by-value (like ML) and call-by-name (like Haskell) functional languages—for deter-
ministically deciding which path to go down. The second dilemma of computation is that
important tasks can be buried within a program, and those tasks must be brought to the
surface to complete the evaluation of the program. The job of bringing tasks to the forefront
of a program—related to focusing (Andreoli, 1992; Laurent, 2002) in logic—can be done

ZU064-05-FPR sequent-intro 22 March 2018 17:26

4 P. Downen and Z. M. Ariola

at one of two points in the lifetime of the program: either up front at “compile time” before
the program is evaluated, or in the moment at “run time” during the evaluation process.

To begin, we introduce and motivate the basic premise of sequent calculus with its con-
trast to natural deduction: whereas natural deduction is a logic about just truth, the sequent
calculus is a logic equally about both truth and falsehood (Section 2). With this premise
in mind, we then review the original classical logic of the sequent calculus: Gentzen’s
(1935a) LK (Section 3). In order to draw a programming language from LK, we need a
little extra structure than the austere logic provides. Thus, we introduce the core calculus
(Herbelin, 2005) that lets us read proofs in the sequent calculus as programs (Section 4).
Although the core calculus is rather basic, it is still expressive enough to exhibit the first
computational dilemma of evaluation strategy in the sequent calculus. We then populate the
core calculus with the logical connectives of LK to give the dual calculi that combine the
languages introduced by Curien and Herbelin (2000) and Wadler (2003, 2005) (Section 5).
The dual calculi solve the dilemma of evaluation strategy through the language: the dual
calculi are actually two different languages—one call-by-value and one call-by-name—
with a common syntax that are logically and computationally dual to one another in a
way that reaffirms Filinski’s (1989) observation. Additionally, within the dual calculi, we
have two approaches to address the dilemma of focusing in the language: either through
two different sub-syntaxes in the style of LKQ and LKT (Curien and Herbelin, 2000) that
are coordinated with the evaluation strategy to only let us write well-behaved programs,
or through adding the missing steps, known as ς -rules (Wadler, 2003), to the evaluation
process.

2 Truth versus falsehood

Gentzen (1935a) simultaneously developed both natural deduction and the sequent calculus
as formal systems for symbolic logic: tools for studying propositions (which we denote by
the variables A,B,C, . . .) which might be true or false. One of the ground-breaking insights
of the sequent calculus is the use of its namesake sequents to organize the information we
have about the various propositions in question. In its most general form, a sequent is a
conditional conglomeration of propositions:

A1,A2, . . . ,An ` B1,B2, . . . ,Bm

pronounced “A1, A2, . . ., and An entail B1, B2, . . ., or Bm,” which states that assuming
each of A1,A2, . . . ,An is true then at least one of B1,B2, . . . ,Bm must be true. The turnstile
(`) in the middle of the sequent separates the sequence of hypotheses on the left, which
we collectively write as Γ, from the sequence of consequences on the right, which we
collectively write as ∆.

This separation between the left and right sides of the sequent gives the essential skeletal
structure of the sequent calculus as a logic. As special cases, we can form several basic
judgements about logical propositions using our above interpretation of the meaning of
sequents by observing that an empty collection of hypotheses denotes “true” and an empty
collection of consequences denotes “false” (both written as •). A single consequence
without hypotheses • ` A means “A is true”, a single hypothesis without consequences
A ` • means “A is false”, and the empty sequent • ` • is a primitive contradiction “true

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 5

Left Right

Elimination

A∧B ` • • ` A • ` B

• ` •
• ` A∧B

• ` A

• ` A∧B

• ` B

Introduction

A ` •
A∧B ` •

B ` •
A∧B ` •

• ` A • ` B

• ` A∧B

Fig. 1. The orientation of deductions for conjunction (∧).

Left Right

Elimination

A∨B ` •
A ` •

A∨B ` •
B ` •

• ` A∨B A ` • B ` •
• ` •

Introduction

A ` • B ` •
A∨B ` •

• ` A

• ` A∨B

• ` B

• ` A∨B

Fig. 2. The orientation of deductions for disjunction (∨).

entails false.” So already, the basic structure of the sequent gives us a language for speaking
about truth, falsehood, and contradiction without assuming anything else about the logic.

The propositions that we deal with in both the logic of natural deduction and the sequent
calculus are meant to represent falsifiable or verifiable claims in a particular domain of
study, such as “0 is greater than 1.” However, in their simplest form, these logics don’t
account for domain-specific knowledge and leave such basic propositions as atoms or unin-
terpreted variables. Instead, the primary interest of the logic is to characterize the meaning
of logical connectives that combine or modify existing propositions such as conjunction
(A∧B), disjunction (A∨B), or implication (A⊃ B). Logic gives us a method for describing
the logical connectives by asserting the rules for valid inferences we can make of the form:

H1 H2 . . . Hn
J

where the validity of the conclusion J necessarily follows from the validity of the several
premises H1,H2, . . . ,Hn, each of which stand for particular sequents.

For example, we can sensibly assert the validity of the deductions involving conjunction
shown in Fig. 1 based on the meaning of conjunction. Due to the interaction between
entailment in the sequent (separating hypotheses from consequences) and the line of in-

Left Right

Elimination

A⊃ B ` •
• ` A

A⊃ B ` •
B ` •

• ` A⊃ B • ` A

• ` B

Introduction

• ` A B ` •
A⊃ B ` •

A ` B

• ` A⊃ B

Fig. 3. The orientation of deductions for implication (⊃).

ZU064-05-FPR sequent-intro 22 March 2018 17:26

6 P. Downen and Z. M. Ariola

ference (separating premises from conclusions), we have two dimensions for orienting
inference rules based on the location of their primary proposition (marked with a box
in Fig. 1). On the one hand, rules where the primary proposition appears to the right or
left of the turnstile are called right and left rules, respectively. On the other hand, rules
where the primary proposition appears below or above the line of inference are called
introduction and elimination rules, respectively. This gives us four quadrants where the
rules of inference for conjunction might live.

• Right introduction: if both A and B are true then we can deduce that A∧B is true.
• Right elimination: if A∧B is true, then we can deduce that A is true and likewise that

B is true.
• Left introduction: if A is false then we can deduce that A∧B is false, and likewise if

B is false.
• Left elimination: if it happens that A∧B is false and also both A and B are true, then

we must have a contradiction somewhere, as this represents an impossible situation.

Similar inference rules can be given for disjunction and implication under the same right/left
and introduction/elimination orientations as shown in Figs. 2 and 3. It’s interesting to note
that the premise to the right introduction rule for implication does not have the same basic
form of sequent as in all the other rules. It seems that we need to use the inherent entailment
built into sequents to confirm the truth of an implication, so that from A ` B (i.e., “A entails
B”) we can deduce • ` A⊃ B (i.e., “A implies B is true”).

With the dimensions of logical orientation illustrated in Figs. 1, 2, and 3, we can identify
one of the primary distinctions between natural deduction and the sequent calculus. Natural
deduction is exclusively made up of right rules—including both right introduction and
right elimination—and the sequent calculus is exclusively made up of introduction rules—
including both right introduction and left introduction.But neither make use of the left
eliminations. In other words, natural deduction is concerned with verifying and using the
truth of propositions, whereas the sequent calculus is concerned with both the true and
false introductions of logical connectives. With this fundamental characterization of the
sequent calculus in mind, we will delve into the original sequent-based logic: LK.

3 Gentzen’s LK

Gentzen’s LK, a simple logic based extensively on the use of sequents to trace local
hypotheses and consequences throughout a proof, is given in Fig. 4. The sequents are
built out of finite, ordered sequences of propositions denoted by the metavariables Γ and
∆, which may be (1) empty (written •), (2) a single proposition (written as just A), or
(3) a concatenation of two sequences (written with a comma as Γ,Γ′ and ∆,∆′). Inference
rules let us build proof trees by stacking inferences on top of one another. In addition
to the binary logical connectives for conjunction, disjunction, and implication, as well as
constants for truth (>) and falsehood (⊥), we also include negation (written ¬A and read
“not A”) as a unary logical connective and subtraction (written A−B and read “A but not
B”) as the dual to implication. Finally, LK also contains two quantifiers—universal (written
∀X .A and read “for all X , A”) and existential (written ∃X .A and read “there is an X such that
A”)—that abstract over propositional variables denoted by X , Y , or Z. More specifically,

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 7

A,B,C ∈ Proposition ::= X || > || ⊥ || A∧B || A∨B || ¬A || A⊃ B || A−B || ∀X .A || ∃X .A

Γ ∈ Hypothesis ::= A1, . . . ,An

∆ ∈ Consequence ::= A1, . . . ,An

Sequent ::= Γ ` ∆

Core rules:

A ` A Ax
Γ ` A,∆ Γ′,A ` ∆′

Γ′,Γ ` ∆′,∆
Cut

Structural rules:

Γ ` ∆

Γ ` A,∆
WR Γ ` ∆

Γ,A ` ∆
WL

Γ ` A,A,∆
Γ ` A,∆ CR

Γ,A,A ` ∆

Γ,A ` ∆
CL

Γ ` ∆,A,B,∆′

Γ ` ∆,B,A,∆′
XR

Γ′,B,A,Γ ` ∆

Γ′,A,B,Γ ` ∆
XL

Logical rules:

Γ ` >,∆ >R
no >L rule no ⊥R rule Γ,⊥ ` ∆

⊥L

Γ ` A,∆ Γ ` B,∆
Γ ` A∧B,∆

∧R
Γ,A ` ∆

Γ,A∧B ` ∆
∧L1

Γ,B ` ∆

Γ,A∧B ` ∆
∧L2

Γ ` A,∆
Γ ` A∨B,∆

∨R1
Γ ` B,∆

Γ ` A∨B,∆
∨R2

Γ,A ` ∆ Γ,B ` ∆

Γ,A∨B ` ∆
∨L

Γ,A ` ∆

Γ ` ¬A,∆
¬R

Γ ` A,∆
Γ,¬A ` ∆

¬L

Γ,A ` B,∆
Γ ` A⊃ B,∆

⊃R
Γ ` A,∆ Γ′,B ` ∆′

Γ′,Γ,A⊃ B ` ∆′,∆
⊃L

Γ ` A,∆ Γ′,B ` ∆′

Γ′,Γ ` A−B,∆′,∆
−R

Γ,A ` B,∆
Γ,A−B ` ∆

−L

Γ ` A,∆ X /∈ FV(Γ ` ∆)

Γ ` ∀X .A,∆
∀R

Γ,A{B/X} ` ∆

Γ,∀X .A ` ∆
∀L

Γ ` A{B/X} ,∆
Γ ` ∃X .A,∆

∃R
Γ,A ` ∆ X /∈ FV(Γ ` ∆)

Γ,∃X .A ` ∆
∃L

Fig. 4. Gentzen’s LK sequent calculus.

the quantifiers act as binders for propositional variables: both ∀X .A and ∃X .A bind all
occurrences of X in A (otherwise a variable is free), and propositions are considered equal
up to renaming of bound variables so ∀X .A = ∀Y.A{Y/X} and ∃X .A = ∃Y.A{Y/X}. For
simplicity, we limit the presentation to second-order propositional logic, meaning that ∀
and ∃ only quantify over propositions, not another domain of discourse, like numbers.

Core inference rules

The various inference rules of LK can be thought of in three groups that collectively work
toward different objectives. The first group, containing just the axiom (Ax) and cut (Cut)
rules, gives the core of LK. The Ax rule lets us draw consequences from hypotheses with

ZU064-05-FPR sequent-intro 22 March 2018 17:26

8 P. Downen and Z. M. Ariola

the understanding that “A entails A” for any proposition A. The Cut rule lets us eliminate
intermediate propositions from a proof. For example, the special case of the Cut rule where
the hypothesis Γ,Γ′ and consequences ∆,∆′ are all empty is:

• ` A A ` •
• ` • Cut

In other words, if there is a proposition A that we know is both true (• ` A) and false
(A ` •), then we can deduce that a contradiction has taken place (• ` •). We can then
use the intuitive reading of sequents to extend this reasoning to the general form of Cut,
meaning that it is valid to allow additional hypotheses and alternate consequences in both
premises when eliminating a proposition in this fashion so long as they are all gathered
together in the resulting conclusion. Both Ax and Cut play an important part in the overall
structure of LK proof trees. The Ax serves as the primitive leaves of the proof, signifying
that there is nothing interesting to justify because we have just what is needed. The Cut lets
us use auxiliary proofs or “lemmas” without them appearing in the final conclusion, where
on the one hand we show how to derive a proposition A as a consequence and on the other
hand we assume A as an hypothesis that may be used in another proof.

Structural inference rules

Next, we have group of inference rules aim to describe the structural properties of the
sequents themselves that arise from their meaning. The weakening rules say that we can
make any proof weaker by adding additional unused hypotheses (WL) or considering
alternative unfulfilled consequences (WR) since the presence of irrelevant propositions
doesn’t matter. The contraction rules say that duplicate hypotheses (CL) and duplicate
consequences (CR) can just as well be merged into one since redundant repetitions don’t
matter. And finally, the exchange rules say that hypotheses (XL) and consequences (XR) can
be swapped since the order of propositions doesn’t matter. So even though the hypothesis
Γ and consequence ∆ of a sequent are both formally represented by ordered sequences,
the net effect of the contraction and exchange structural rules is to make them behave like
sets—wherein order and amount is ignored—for the purpose of deriving proofs.

It may seem strange that the meaning of a sequent with multiple consequences is that
only one consequence must be true instead of all consequences being true. In other words,
the consequences of a sequent are disjunctive rather than conjunctive so that, for example,
A ` B,C means “A entails B or C” instead of “A entails B and C.” One reason for this inter-
pretation is that disjunctive consequences can be weakened but conjunctive consequences
cannot. For example, if we already know that “A entails B or C” then we can deduce “A
entails B or C or D” for any D because we already know that either B or C is a consequence
of A, so the status of D is irrelevant. However, if we already know that “A entails B and C”
then we don’t know much about “A entails B and C and D” in general, since D might not
actually follow from A at all. A similar argument also explains why the hypotheses of a
sequent are conjunctive rather than disjunctive. Therefore, the meaning of sequents, where
all hypotheses must entail one consequence, is essential for enabling weakening on both
sides of entailment.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 9

Logical inference rules

Finally, we have the group of inference rules that aims to characterize the logical connec-
tives. These logical rules are generalizations of the introduction rules for the connectives
from Figs. 1, 2, and 3: the left rules are named with an L and the right rules are named with
an R. Compared to our basic observations, each logical rule is generalized with additional
hypotheses and alternative conclusions that are “along for the ride,” similar to Cut. For
example, the two left introduction rules for conjunction in Fig. 1 are generalized to:

Γ,A ` ∆

Γ,A∧B ` ∆
∧L1

Γ,B ` ∆

Γ,A∧B ` ∆
∧L2

which say that if ∆ is a consequence of A and Γ, then ∆ is just as well a consequence of
A∧B and Γ (and similarly for B). Likewise, the sequents Γ ` >,∆ and Γ,⊥ ` ∆ are true
independent of Γ and ∆ because > is trivially true and ⊥ is trivially false. Since we also
consider both logical negation (¬A) and logical subtraction (A−B) as connectives, they too
are equipped with left and right introduction rules in Fig. 4. The rules for negation have the
following special cases when Γ and ∆ are empty:

A ` •
• ` ¬A

¬R • ` A
¬A ` • ¬L

In other words, whenever A is false we can infer that ¬A true, and whenever A is true we
know ¬A is false. Similarly, the rules for subtraction have the following special cases when
the hypotheses and consequences are empty:

• ` A B ` •
• ` A−B

−R A ` B
A−B ` • −L

In other words, whenever both A is true and B is false we can infer that A−B is true, and
whenever A entails B we know that A−B must be false. Intuitively, the subtraction A−B
can be understood as a single connective with the same logical meaning as the compound
proposition A∧ (¬B), in the same way that the implication A→ B can be understood as a
connective with the same meaning as (¬A)∨B.

Perhaps the most subtle logical connectives in LK are the quantifiers ∀ and ∃. The special
cases of the introduction rules for ∀X .A and ∃X .A when Γ and ∆ are empty are:

• ` A
• ` ∀X .A

∀R
A{B/X} ` •
∀X .A ` • ∀L

• ` A{B/X}
• ` ∃X .A

∃R A ` •
∃X .A ` • ∃L

For universal quantification over the variable X in A, if we can prove that A is true without
knowing anything about X then we can infer that ∀X .A is true, and if we can exhibit
a specific B such that A with B for X is false then we have a counterexample showing
that ∀X .A is false. Existential quantification over the variable X in A is reversed, so that
exhibiting a specific B such that A with B for X is true is an example showing that ∃X .A is
true, whereas showing that A is false without knowing anything about X lets us infer that
∃X .A is false. The extra subtlety of the quantifiers lies in ensuring that we “know nothing
else about X .” In the sequent calculus, this extra constraint can be captured in the side
condition that the variable X does not appear free anywhere else in the sequent, written as
the premise X /∈ FV(Γ ` ∆) in both the ∀R and ∃L rules.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

10 P. Downen and Z. M. Ariola

Notice that this extra side condition really is necessary, since without it both quantifiers
collapse into one, which is clearly not what we want. For example, we should expect that a
∀ entails the corresponding ∃, that is ∀X .A ` ∃X .A, which is proved as follows by choosing
any arbitrary proposition B to substitute for X :

A{B/X} ` A{B/X} Ax

∀X .A ` A{B/X} ∀L

∀X .A ` ∃X .A
∃R

So every ∀ entails the corresponding ∃. Intuitively the converse should not hold; it shouldn’t
be that an ∃ always entails the corresponding ∀. However, consider the following attempted
proof of ∃X .A ` ∀X .A:

A ` A Ax X /∈ FV(• ` A)
∃X .A ` A

∃L
X /∈ FV(∃X .A ` •)

∃X .A ` ∀X .A
∀R

The this proof is only valid when the side conditions X are met: X /∈ FV(∃X .A ` •) is
always true for any A but X /∈ FV(• ` A) only holds when X does not appear free in A. In
other words, the ∀ and ∃ quantifiers are only logically equivalent when their quantified
variable is never referenced. When instantiating A as just X for example, the sequent
∃X .X ` ∀X .X is not provable only because of the side conditions since X is indeed free
in X . Therefore, the side conditions on ∀R and ∃L are essential for keeping the intended
distinct meanings of the quantifiers.

Collapsing ∀ and ∃ is not just troublesome for the quantifiers themselves, but catastroph-
ically collapses truth and falsehood in the logic as a whole. More specifically, removing
the side conditions from ∀R and ∃L makes LK inconsistent by making the contradictory
sequent • ` • derivable. One such derivation of contradiction is built in three parts. First,
we can prove that ∃X .X is true because there is some provably true proposition in LK, for
example >. Second, we can prove that ∀X .X is false because there is some provably false
proposition in LK, for example ⊥. Third, without the side conditions on free propositional
variables, we would be able to derive a proof of ∃X .X ` ∀X .X as seen above, which is the
glue that connects the first two parts together via cuts. In total, we would be able to derive
the following contradiction in LK:

• ` > >R

• ` ∃X .X
∃R

X ` X Ax

∃X .X ` X
∃L

∃X .X ` ∀X .X
∀R

• ` ∀X .X Cut ⊥ ` • ⊥L

∀X .X ` • ∀L

• ` • Cut

which is only ruled out by the side conditions on ∀R and ∃L that prevent a proof of the
sequent ∃X .X ` ∀X .X .

Goal-directed proof search

LK enables a “bottom up” style of building proofs by starting with a final sequent as a goal
that we would like to prove and building the rest of the proof up from there. When read in

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 11

reverse, each logical rule identifies a connective in the goal below the line of inference
and breaks it down into simpler sub-goals above the line. For example, let’s consider
how to build an LK proof that the proposition ((A∧B)∧C) ⊃ (B∧A) is true. First, we
begin with the sequent • ` ((A∧B)∧C)⊃ (B∧A) as the goal and notice that the primary
connective exposed in the only proposition available is implication, so we can apply the
right implication rule:

....
(A∧B)∧C ` B∧A

• ` ((A∧B)∧C)⊃ (B∧A)
⊃R

Next, we may break down the conjunction in the consequence B∧A with the right con-
junction rule, splitting the proof into two parts:

....
(A∧B)∧C ` B

....
(A∧B)∧C ` A

(A∧B)∧C ` B∧A
∧R

• ` ((A∧B)∧C)⊃ (B∧A)
⊃R

At this point, the consequences of both our goals are generic, lacking any specific connec-
tives to work with. Therefore, we must shift our attention to the left and begin breaking
down the hypotheses. Since the hypothesis (A∧B)∧C contains a superfluous C, we use
the first left conjunction rule in both branches of the proof to discard it:

....
A∧B ` B

(A∧B)∧C ` B
∧L1

....
A∧B ` A

(A∧B)∧C ` A
∧L1

(A∧B)∧C ` B∧A
∧R

• ` ((A∧B)∧C)⊃ (B∧A)
⊃R

Now we may apply another left conjunction rule to select the appropriate hypothesis
needed for both sub-proofs:

....
B ` B

A∧B ` B
∧L2

(A∧B)∧C ` B
∧L1

....
A ` A

A∧B ` A
∧L1

(A∧B)∧C ` A
∧L1

(A∧B)∧C ` B∧A
∧R

` ((A∧B)∧C)⊃ (B∧A)
⊃R

And finally, we can now close off both sub-proofs with the Ax rule, finishing the proof:

B ` B Ax

A∧B ` B
∧L2

(A∧B)∧C ` B
∧L1

A ` A Ax

A∧B ` A
∧L1

(A∧B)∧C ` A
∧L1

(A∧B)∧C ` B∧A
∧R

• ` ((A∧B)∧C)⊃ (B∧A)
⊃R

ZU064-05-FPR sequent-intro 22 March 2018 17:26

12 P. Downen and Z. M. Ariola

3.1 Consistency and cut elimination

One of Gentzen’s motivations for developing the LK sequent calculus was to study the
consistency of natural deduction. A consistent logic does not prove a contradiction, so that
no proposition is proven both true and false. More specifically, we can say that a sequent
calculus is consistent whenever there is no proof of the empty sequent • ` •. For a logic
like LK, these two conditions are the same: from a contradiction weakening gives us • ` A
and A ` • for any A, and from any A that’s proven both true and false, Cut gives us • ` •.
Consistency is important because without it provability is meaningless: it’s not particularly
interesting to exhibit a proof that some proposition A is true when we already know of a
single proof that shows every proposition is true (and false)!

So in the interest of showing LK’s consistency, how might we possibly begin to build a
proof of the empty sequent from the bottom up? Let’s consider which of LK’s inference
rules (from Fig. 4) could possibly deduce • ` •. It can’t be any of the structural rules
because they all force at least one hypothesis or consequence in the conclusion below the
line. Likewise, it can’t be any of the logical rules: since they are introduction rules, they
all include at least one proposition built from a connective on either side of the deduced
sequent. It also can’t be the axiom rule, which only deduces simple non-empty sequents of
the form A ` A. Indeed, the only inference rule that might ever deduce an empty sequent—
and therefore lead to inconsistency—is Cut as shown previously.

This observation that only cuts can lead to contradictions is Gentzen’s (1935b) great
insight to logical consistency. If we want to know that a sequent calculus like LK is
consistent, it’s enough to ask if the Cut rule is important for provability. If Cut is not
essential in any proof, so any provable sequent can be deduced without the help of Cut,
then • ` • is unprovable since it cannot be deduced without Cut. This application highlights
the importance of Gentzen’s (1935a) cut elimination (originally called Hauptsatz), which
says that every LK proof can be reduced to a cut-free one.

Theorem 1 (Cut elimination). For all LK proofs of Γ ` ∆, there exists an alternate LK
proof of Γ ` ∆ that does not contain any use of the Cut rule.

Corollary 1 (Consistency). There is no LK proof of • ` •.

The simplest cases of cut eliminations case is when an Ax axiom is cut with a proof D

of Γ ` A,∆ or E of Γ,A ` ∆. This particular maneuver doesn’t add anything interesting to
the nature of the underlying proof, and so correspondingly eliminating the cut should just
give the same proof back unchanged, as we can see in both cases:

D....
Γ ` A,∆ A ` A Ax

Γ ` A,∆ Cut
=⇒

D....
Γ ` A,∆

A ` A Ax

E....
Γ,A ` ∆

Γ,A ` ∆
Cut

=⇒

E....
Γ,A ` ∆

Notice here that cutting an axiom with both D and E does not change the sequent in either
conclusion, which comes from the precise way that Cut merges the side propositions in
the two premises. For D , the extra consequence A coming from the axiom A ` A replaces
the cut A in exactly the right position, and likewise for E . If Cut put the propositions of its
conclusion in any other order, then we would need to exchange the result of one or both of
the above steps with XL and XR to put them back into the right order.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 13

The rest of the proof of cut elimination can be divided into two main parts: the logical
steps and the structural steps. The logical steps of cut elimination consider the cases when
we have a cut between two proof trees ending in the left and right rules for the same
connective occurring in the same proposition, and show how to rewrite the proof into a new
one that does not mention that particular connective. The structural steps of cut elimination
handle all the other cases where we do not have a left and right introduction for the same
proposition facing one another in a cut. These steps involve rewriting the structure of the
proof and propagating the rules until the relevant logical steps can take over. The final
ingredient is to ensure that this procedure for eliminating cuts always gives a definite result,
and does not spin off into an infinite regress.

Logical cut elimination steps

Notice how different inference rules of LK treat the division of extraneous hypotheses and
consequences among multiple premises differently. On the one hand, rules like ∧R and ∨L
duplicate the side propositions Γ and ∆ from the conclusion to both premises. On the other
hand, rules like Cut and ⊃L merge different side propositions from the two premises into
the common conclusion, creating an ordering between them during the merge. Why are
these particular rules given in such different styles, and why is the particular merge order
chosen? One way to understand the impact of these details is to look at the interaction
between the logical and structural rules during cut elimination, so let’s examine a few
exemplary steps of the cut elimination procedure when logical rules meet each other.

First, consider what happens when compatible ∧R and ∧L1 introductions, with premises
D1, D2, and E respectively, meet in a Cut:

D1....
Γ ` A,∆

D2....
Γ ` B,∆

Γ ` A∧B,∆
∧R

E....
Γ′,A ` ∆′

Γ′,A∧B ` ∆′
∧L1

Γ′,Γ ` ∆′,∆
Cut

=⇒

D1....
Γ ` A,∆

E....
Γ′,A ` ∆′

Γ′,Γ ` ∆′,∆
Cut

Reducing this cut involves selecting the appropriate premise D1 of the ∧R introduction so
that it can meet with the single premise of ∧L1. The number of cuts are not reduced by
this step, but instead the active proposition A∧B of the cut has been reduced to A, which
(non-trivially) justifies why this step is making progress in the cut elimination procedure.

Not every cut-elimination step winds up so neatly organized, unfortunately, and some-
times the result is necessarily out of order and must be corrected. For example, consider the
following reduction step of a Cut between compatible ¬R and ¬L inferences with premises
D and E respectively:

D....
Γ,A ` ∆

Γ ` ¬A,∆
¬R

E....
Γ′ ` A,∆′

Γ′,¬A ` ∆′
¬L

Γ′,Γ ` ∆′,∆
Cut

=⇒

E....
Γ′ ` A,∆′

D....
Γ,A ` ∆

Γ,Γ′ ` ∆,∆′
Cut

Γ′,Γ ` ∆′,∆
XL,XR

ZU064-05-FPR sequent-intro 22 March 2018 17:26

14 P. Downen and Z. M. Ariola

Here, the Cut we get from reducing the proposition ¬A to A results in a sequent that is
out of order compared to the conclusion we started with. Thus, we need to re-order the
sequent with some number of XL and XR exchanges to restore the original conclusion.
The fact that reducing a negation introduction cut inverts the order of propositions comes
from the inherent inversion of negation: there’s no obvious way to prevent this scenario by
modifying Cut.

A similar re-ordering occurs with implication, where a Cut between compatible ⊃R and
⊃L inferences, with premises D , E1, and E2, can be reduced as follows:

D....
Γ,A ` B,∆

Γ ` A⊃ B,∆
⊃R

E1....
Γ′ ` A,∆′

E2....
Γ′′,B ` ∆′′

Γ′′,Γ′,A⊃ B ` ∆′′,∆′
⊃L

Γ′′,Γ′,Γ ` ∆′′,∆′,∆
Cut

=⇒

E1....
Γ′ ` A,∆′

D....
Γ,A ` B,∆

E2....
Γ′′,B ` ∆′′

Γ′′,Γ,A ` ∆′′,∆
Cut

Γ′′,Γ,Γ′ ` ∆′′,∆,∆′
Cut

Γ′′,Γ′,Γ ` ∆′′,∆′,∆
XL,XR

Here, we start with the side-propositions of E1 and E2 merged together with ⊃L, but after
reducing the Cut, D lies in between the two of them, so the conclusion must be re-ordered
to match the original. The need to place D in the middle comes from the fact that its
concluding sequent has A on the left and B on the right, so our only available cuts must
correspondingly place E1 to the left and E2 to the right, no matter how they are nested.

Finally, we can see how the free variable side conditions on the ∀R and ∃L rules play
a key role in cut elimination. For example, consider the following reduction step of a cut
between compatible ∀R and ∀L inferences with D and E respectively:

D....
Γ ` A,∆

Γ ` ∀X .A,∆
∀R

E....
Γ′,A{B/X} ` ∆

Γ′,∀X .A ` ∆′
∀L

Γ′,Γ ` ∆′,∆
Cut

=⇒

D {B/X}....
Γ ` A{B/X} ,∆

E....
Γ′,A{B/X} ` ∆

Γ′,Γ ` ∆′,∆
Cut

Notice that in order to make a direct cut between D and E , we need to substitute B for
X in D to make the two sides match up properly. The fact that X does not occur free in
Γ ` ∆ means that after substitution, both Γ and ∆ remain unchanged in the conclusion of
the proof. If instead X appeared free somewhere in Γ or ∆, then the logical cut elimination
step for ∀ would change the conclusion which ruins the result of the procedure. As we saw
previously, without the side conditions the ∀ and ∃ quantifiers are equivalent which lets us
derive a proof of the contradictory sequent • ` • that is ruled out by cut elimination. So the
side conditions on the ∀R and ∃L rules are not just a useful aid to cut elimination, but are
crucial to the entire endeavor.

Structural cut elimination steps

The logical steps may be the primary focus of cut elimination, but there are still more cases
they don’t cover. In particular, what happens when one of the weakening, contraction, or
exchange rules immediately precedes a cut? The full cut elimination procedure must also
account for the structural steps in which a cut is forced to interact with a structural rule.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 15

The most straightforward structural step of cut elimination handles the case of weaken-
ing adding an unused proposition right before its cut. Such a cut is eliminated by deleting
the partner premise of the cut. For example, for the WL rule which adds the unused
hypothesis A in the cut, we can discard the proof of A as follows:

D....
Γ ` A,∆

E....
Γ′ ` ∆′

Γ′,A ` ∆′
WL

Γ′,Γ ` ∆′,∆
Cut

=⇒

E....
Γ′ ` ∆′

Γ′,Γ ` ∆′,∆
WL,WR,XR

Dually, a cut of an unused consequence A introduced by WR can be eliminated by dis-
carding the other premise which uses A as a hypothesis. Note that in the case where both
premises to the cut end in a weakening, both of these dual steps can sensibly apply, leading
to a potential non-deterministic choice in the cut elimination procedure.

The structural step for contraction is similar, but one premise is duplicated rather than
discarded. For example, for the CL rule which merges two duplicate hypotheses in the cut,
we can duplicate the proof of A as follows:

D....
Γ ` A,∆

E....
Γ′,A,A ` ∆′

Γ′,A ` ∆′
CL

Γ′,Γ ` ∆′,∆
Cut

=⇒

D....
Γ ` A,∆

D....
Γ ` A,∆

E....
Γ′,A,A ` ∆′

Γ′,A,Γ ` ∆′,∆
Cut

Γ′,Γ,A ` ∆′,∆
XL

Γ′,Γ,Γ ` ∆′,∆,∆
Cut

Γ′,Γ ` ∆′,∆
CL,CR,XR

And the dual structural step involving CR is symmetric to the above. As before with
weakening, in the case where the cut proposition is contracted on both the left and right,
there is a non-deterministic choice of which structural step to apply.

The trickiest structural rules to accomodate during cut elimination are the exchange
rules. By reordering the sequent, these can have the effect of moving the active proposition
of interest in rules like Cut or the logical rules, so it is held on the inside of the sequent
(next to `). To get around this issue, we can handle exchange by generalizing the Cut rule
to allow for the cut proposition to appear anywhere in the sequent as follows:

Γ ` ∆1,A,∆2 Γ′2,A,Γ
′
1 ` ∆′

Γ′2,Γ
′
1,Γ ` ∆′,∆1,∆2

CutX

Note that this generalization from Cut to CutX doesn’t change which sequents can be
proved: Cut is an instance of CutX and CutX is derivable as a combination of a Cut and
potentially many XLs and XRs. However, the more general form of CutX lets us express a
cut elimination step where the exchange rules are folded into the cut. In the case where the

ZU064-05-FPR sequent-intro 22 March 2018 17:26

16 P. Downen and Z. M. Ariola

cut proposition is exchanged with XL we have the step

D....
Γ ` ∆1,A,∆2

E....
Γ′2,A,B,Γ

′
1 ` ∆′

Γ′2,B,A,Γ
′
1 ` ∆′

XL

Γ′2,Γ
′
1,Γ ` ∆′,∆1,∆2

CutX
=⇒

D....
Γ ` ∆1,A,∆2

E....
Γ′2,A,B,Γ

′
1 ` ∆′

Γ′2,Γ
′
1,Γ ` ∆′,∆1,∆2

CutX

and the step for XR is symmetric to the above.
So the CutX rule makes the structural steps for exchange trivial. However, this general-

ization of cut means that there are many more cases to consider. Because the cut proposition
may not be the active proposition on the inside of the sequent, it may happen that the rules
immediately proceeding the CutX have nothing to do with the cut. In these cases, we need
yet more structural rules that commute a cut with other rules when they do not interact
with one another. As an example of structural commutation, we could have the following
weakening on the left of A followed by a cut of C, which is reduced as follows:

D....
Γ ` ∆1,C,∆2

E....
Γ′2,C,Γ′1 ` ∆′

Γ′2,C,Γ′1,A ` ∆′
WL

Γ′2,Γ
′
1,A,Γ ` ∆′,∆1,∆2

CutX
=⇒

D....
Γ ` ∆1,C,∆2

E....
Γ′2,C,Γ′1 ` ∆′

Γ′2,Γ
′
1,Γ ` ∆′,∆1,∆2

CutX

Γ′2,Γ
′
1,A,Γ ` ∆′,∆1,∆2

WL,XL

As an example of logical commutation, we could have a conjunction introduction of A∧B
on the left followed by a cut of C, which is reduced like so:

D....
Γ ` ∆1,C,∆2

E....
Γ′2,C,Γ′1,A ` ∆′

Γ′2,C,Γ′1,A∧B ` ∆′
∧L1

Γ′2,Γ
′
1,A∧B,Γ ` ∆′,∆1,∆2

CutX
=⇒

D....
Γ ` ∆1,C,∆2

E....
Γ′2,C,Γ′1,A ` ∆′

Γ′2,Γ
′
1,A,Γ ` ∆′,∆1,∆2

CutX

Γ′2,Γ
′
1,Γ,A ` ∆′,∆1,∆2

XL

Γ′2,Γ
′
1,Γ,A∧B ` ∆′,∆1,∆2

∧L1

Γ′2,Γ
′
1,A∧B,Γ ` ∆′,∆1,∆2

XL

There are many more such commuting steps for all the cases where the cut proposition is
not the active one next to the turnstile, each of which push the cut up into the premis(es) of
the proceeding rule similar to the above examples.

3.2 Logical duality

Another application of sequent calculi is to study the dualities of logic through the deep
symmetries of the system (Gentzen, 1935b). The turnstile of entailment (`) provides the
pivot of duality separating left from right and true from false. Logical duality in the LK se-
quent calculus expresses a relationship between the connectives that follows De Morgan’s
laws about the way negation distributes over conjunction and disjunction:

¬(A∧B) a` (¬A)∨ (¬B)

¬(A∨B) a` (¬A)∧ (¬B)

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 17

Duality of sequents:

(Γ ` ∆)⊥ , ∆
⊥ ` Γ

⊥ (A1, . . . ,An)
⊥ , A⊥n , . . . ,A

⊥
1

Duality of propositions:

(X)⊥ , X (¬A)⊥ , ¬(A⊥)

(A∧B)⊥ , (A⊥)∨ (B⊥) (A∨B)⊥ , (A⊥)∧ (B⊥)

(A⊃ B)⊥ , (B⊥)− (A⊥) (B−A)⊥ , (A⊥)⊃ (B⊥)

(∀X .A)⊥ , ∃X .(A⊥) (∃X .A)⊥ , ∀X .(A⊥)

Fig. 5. Duality in the LK sequent calculus.

Here we interpret the equivalence relation A a` B as the mutual provability of A and B:
that both A ` B and B ` A are provable. Focusing on the opposite roles of the left and right
sides of a sequent, we can immediately observe that the introduction rules of conjunction
and disjunction from Fig. 4 are mirror images of one another by flipping the sequents
across their turnstile. Similarly, ⊃ and − are dual to one another as well as both the ∀
and ∃ quantifiers, and negation is its own dual, with both ¬R and ¬L reflecting the same
inference flipped about entailment.

Since each connective has a dual counterpart, we can express the duality of sequent
calculus proofs—for every LK proof D of a sequent:

D....
An, . . . ,A2,A1 ` B1,B2, . . . ,Bm

there is a dual proof D⊥ of the dual sequent:

D⊥....
B⊥m , . . . ,B

⊥
2 ,B

⊥
1 ` A⊥1 ,A

⊥
2 , . . . ,A

⊥
n

The duality relation on judgements and propositions, is given in Fig. 5. Note that the duality
operation A⊥ may be understood as taking the negation of the proposition, ¬A, and pushing
the negation inward all the way using the De Morgan laws, until a proposition variable X
is reached (Gentzen, 1935b).

Theorem 2 (Logical duality). For any LK proof D of the sequent Γ ` ∆, there exists a dual
proof D⊥ of the dual sequent ∆⊥ ` Γ⊥.

Note that Gentzen did not consider the dual counterpart to implication as a connective,
as we do, but rather eliminated implication from the system by encoding it in terms of
disjunction and negation given above for the purposes of establishing duality.

Due to the natural syntactic symmetry of the LK sequent calculus, logical duality comes
from an exchange between left and right: left rules mirror right rules and hypotheses to
the left of entailment mirror consequences to the right. Thus, establishing logical duality
in the sequent calculus follows from a straightforward induction on the structure of proofs,
working from the bottom conclusion up to the axioms.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

18 P. Downen and Z. M. Ariola

Non-contradiction and excluded middle

To illustrate how the left and right sides of proofs get swapped, consider the case when the
bottom conclusion is inferred from a use of the ∧R rule:

D....
Γ ` A,∆

E....
Γ ` B,∆

Γ ` A∧B,∆ ∧R

Then by the inductive hypothesis, we get a proof D⊥ of (Γ ` A,∆)⊥ , ∆⊥,A⊥ ` Γ⊥ and
a proof E ⊥ of (Γ ` B,∆)⊥ , ∆⊥,B⊥ ` Γ⊥, from which we can deduce (Γ ` A∧B,∆)⊥ ,
∆⊥,(A⊥)∨ (B⊥) ` Γ⊥ by ∨L:

D⊥....
∆⊥,A⊥ ` Γ⊥

E ⊥....
∆⊥,B⊥ ` Γ⊥

∆⊥,A⊥∨B⊥ ` Γ⊥
∨L

The duality of proofs in the LK sequent calculus means that if a proposition A is true, so
that we have a proof of • ` A, then its dual must be false, so that we have a proof of A⊥ ` •.
Analogously, if a proposition A is false, then its dual must be true. For example, consider
the following general proof of the law of non-contradiction, stating that A∧ (¬A) is false:

A ` A Ax

A∧ (¬A) ` A
∧L1

A∧ (¬A),¬A ` •
¬L

A∧ (¬A),A∧ (¬A) ` •
∧L2

A∧ (¬A) ` • CL

Duality gives a general proof of the law of excluded middle, stating that A∨ (¬A) is true:

A ` A Ax

A ` A∨ (¬A)
∨R1

• ` ¬A,A∨ (¬A)
¬R

• ` A∨ (¬A),A∨ (¬A)
∨R2

• ` A∨ (¬A)
CR

The existence of a general proof for the law of excluded middle (• ` A∨(¬A)) is forced by
Theorem 2 because we have a general proof for the law of non-contradiction (A∧(¬A)` •).

4 A core calculus

The logics of natural deduction and the sequent calculus are rather different from one
another. As previously discussed in Section 2, one major point of distinction between the
two styles of logic is that natural deduction is right-handed, favoring truth to the exclusion
of falsehood, whereas the sequent calculus is ambidextrous, directly handing truth and
falsehood on both the left and right sides of entailment. That means that the sequent

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 19

calculus does not correspond to the λ -calculus the same way that natural deduction does.
So what might a programming language based on a sequent calculus like LK look like?

Before delving into the entirety of LK, let’s first consider a core language shown in
Fig. 6, Herbelin’s (2005) µµ̃-calculus, that corresponds to the core part of LK and lies at
the heart of several sequent-based languages (Curien and Herbelin, 2000; Wadler, 2003;
Munch-Maccagnoni, 2009; Curien and Munch-Maccagnoni, 2010), including the one we
will explore. Notice that the language of types in this core lacks any logical connectives,
so that the only types are uninterpreted variables X , Y , Z, etc. The µµ̃-calculus is a bare
language for describing only input, output, and interactions: the types on the right side of
a sequent describe the outputs of a program and the types on the left side of a sequent
describe the inputs of a program. When the two opposite sides come together—when the
opposed forces of input and output meet—we have an interaction that sparks computation.
Note that the type system brings out an aspect of deduction that was implicit in the sequent
calculus: the role of a distinguished active proposition that is currently under consideration.
For example, in the ∧R rule from Fig. 4, we are currently trying to prove the proposition
A∧B, so it is considered the active proposition of the conclusion Γ ` A∧B,∆.

By putting attention on at most one active proposition, we get three classifications of
sequents: active on the right, active on the left, or passive (without an active proposition
on either side). These three forms of sequents likewise classify three different forms of µµ̃

expressions that might be part of a program:

• An active sequent on the right (Γ ` v : A|∆) describes a term v that sends information
of type A as its output (that is, v is a producer of type A).

• An active sequent on the left (Γ|e : A ` ∆) describes a co-term e that receives infor-
mation of type A as its input (that is, e is a consumer of type A).

• A passive sequent (c : (Γ ` ∆)) describes a command c that is an executable program
capable of running on its own without any distinguished input or output.

In each case, the environments Γ and ∆ describe any additional passive (non-active) in-
puts and outputs to an expression by specifying the types of free variables (x, . . .) and
free co-variables (α, . . .) that expression might reference, respectively. Like in LK, these
environments are finite, ordered sequences which may be (1) empty (written •), (2) a
variable or co-variable paired up with its type (written x : A and α : A respectively), or
(3) a concatenation of two sequences (written with a comma as Γ,Γ′ and ∆,∆′). As a
further constraint, we stipulate that each variable and co-variable can appear at most once
in an environment, so that the concatenation of repeated type assignments like x : A,x : B
or α : A,α : B is undefined.

The expressions of the µµ̃-calculus come from the axiom and cut rules of LK plus an
additional pair of activation rules AR and AL. The Ax rule of LK is divided into two separate
rules in µµ̃: the VR rule creates a term by just referring to a variable available from its
environment, and similarly the VL rule creates a co-term by referring to a co-variable. The
Cut rule connects a term and co-term that are waiting to send and receive information of the
same type, so that the output of the term is forwarded to the co-term as input (and dually,
the input of the co-term is drawn from the output of the term). Finally, the activation rules
AR and AL pick a particular (co-)variable from the environment of a command to activate
by creating an output or input abstraction, respectively. Intuitively, if the variable x stands

ZU064-05-FPR sequent-intro 22 March 2018 17:26

20 P. Downen and Z. M. Ariola

A,B,C ∈ Type ::= X

v ∈ Term ::= x || µα.c

e ∈ CoTerm ::= α || µ̃x.c

c ∈ Command ::= 〈v||e〉
Γ ∈ InputEnv ::= x1 : A1, . . . ,xn : An

∆ ∈ OutputEnv ::= α1 : A1, . . . ,αn : An

Sequent ::= (Γ ` v : A | ∆) || (Γ | e : A ` ∆) || c : (Γ ` ∆)

Core rules:

x : A ` x : A | VR | α : A ` α : A
VL

c : (Γ ` α : A,∆)
Γ ` µα.c : A | ∆ AR

c : (Γ,x : A ` ∆)

Γ | µ̃x.c : A ` ∆
AL

Γ ` v : A | ∆ Γ′ | e : A ` ∆′

〈v||e〉 : (Γ′,Γ ` ∆′,∆)
Cut

Structural rules:

c : (Γ ` ∆)

c : (Γ ` α : A,∆)
WR

c : (Γ ` ∆)

c : (Γ,x : A ` ∆)
WL

c : (Γ ` β : A,α : A,∆)
c{α/β} : (Γ ` α : A,∆)

CR
c : (Γ,x : A,y : A ` ∆)

c{x/y} : (Γ,x : A ` ∆)
CL

c : (Γ ` ∆,α : A,β : B,∆′)

c : (Γ ` ∆,β : B,α : A,∆′)
XR

c : (Γ′,y : B,x : A,Γ ` ∆)

c : (Γ′,x : A,y : B,Γ ` ∆)
XL

Γ ` v : C | ∆
Γ ` v : C | α : A,∆

WR
Γ ` v : C | ∆

Γ,x : A ` v : C | ∆ WL

Γ ` v : C | β : A,α : A,∆
Γ ` v{α/β} : C | α : A,∆

CR
Γ,x : A,y : A ` v : C | ∆
Γ,x : A ` v{x/y} : C | ∆ CL

Γ ` v : C | ∆,α : A,β : B,∆′

Γ ` v : C | ∆,β : B,α : A,∆′
XR

Γ′,y : B,x : A,Γ ` v : C | ∆
Γ′,x : A,y : B,Γ ` v : C | ∆ XL

Γ | e : C ` ∆

Γ | e : C ` α : A,∆
WR

Γ | e : C ` ∆

Γ,x : A | e : C ` ∆
WL

Γ | e : C ` β : A,α : A,∆
Γ | e{α/β} : C ` α : A,∆

CR
Γ,x : A,y : A | e : C ` ∆

Γ,x : A | e{x/y} : C ` ∆
CL

Γ | e : C ` ∆,α : A,β : B,∆′

Γ | e : C ` ∆,β : B,α : A,∆′
XR

Γ′,y : B,x : A,Γ | e : C ` ∆

Γ′,x : A,y : B,Γ | e : C ` ∆
XL

Fig. 6. µµ̃: The core language of the sequent calculus.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 21

for an unknown input in a command c, then the input abstraction µ̃x.c is a co-term that,
when given a place to draw information, will bind that location to the input channel x while
running c. Dually, if the co-variable α stands for an unknown output in a command c, then
the output abstraction µα.c is a term that, when given a place to send information, will
bind that location to the output channel α while running c.

Structural rules and static scope

To give a full account of the static semantics of the µµ̃-calculus, we need to address the
issue of how the structural properties of the sequent calculus are represented. For instance,
the co-term µ̃z.〈x||α〉 should have the type x : X | µ̃z.〈x||α〉 : Y ` α : X , but the core
typing rules alone are not enough. Rather, the structural properties of sequents (weakening,
contraction, and exchange) define the meaning of static variables and co-variables.

Similar to LK, the structural properties of sequents in µµ̃ can be expressed by explicit
structural rules that allow for a single (co-)variable to appear any number of times in an
expression. The full collection of these structural scoping rules are shown in Fig. 6, which
corresponds one-for-one with the structural rules of Gentzen’s LK sequent calculus over
each form of µµ̃ expression. The weakening rules say that even if a free (co-)variable is in
scope in an expression, it does not have to be referenced, as in the co-term µ̃z.〈x||α〉:

x : X ` x : X | VR | α : X ` α : X
VL

〈x||α〉 : (x : X ` α : X)
Cut

〈x||α〉 : (x : X ,z : Y ` α : X)
WL

x : X | µ̃z.〈x||α〉 : Y ` α : X
AL

The contraction rules say that a free (co-)variable can be referenced an additional time by
renaming two distinct (co-)variables into one, as in the command 〈µδ .〈y||α〉||µ̃z.〈y||α〉〉:

y : X ` y : X | VR | β : X ` β : X
VL

〈y||β 〉 : (y : X ` β : X)
Cut

〈y||β 〉 : (y : X ` δ : Y,β : X)
WR

y : X ` µδ .〈y||β 〉 : Y | β : X
AR

x : X ` x : X | VR | α : X ` α : X
VL

〈x||α〉 : (x : X ` α : X)
Cut

〈x||α〉 : (x : X ,z : Y ` α : X)
WL

x : X | µ̃z.〈x||α〉 : Y ` α : X
AL

〈µδ .〈y||β 〉||µ̃z.〈x||α〉〉 : (x : X ,y : X ` α : X ,β : X)
Cut

〈µδ .〈x||β 〉||µ̃z.〈x||α〉〉 : (x : X ` α : X ,β : X)
CL

Finally, the exchange rules say that the order of the (co-)variables in scope does not matter.
Notice that none of these rules are syntactically visible in their expression. Unlike the
axiom, activation, and cut rules that only apply to expressions starting with a very specific
form like a (co-)variable, abstraction, or interaction, the structural rules could potentially
apply to expressions of any form so they are not directed by syntax.

The form of the structural rules in Fig. 6 shows the role of the active sequents for
controlling the impact of structural rules on the principle type of interest. In particular,
the type of the term in the sequent Γ ` v : A | ∆ and the type of the co-term in Γ | e : A ` ∆

cannot be subject to weakening, contraction, or exchange. Instead, structural rules only
apply the (co-)variables in the environment, meaning that if we want to contract or weaken
the type of a (co-)term with one of its free (co-)variables, we must first associate its input

ZU064-05-FPR sequent-intro 22 March 2018 17:26

22 P. Downen and Z. M. Ariola

or output with another (co-)variable by forming a command like so:

Γ ` v : A | α : A | β : A ` β : A
VL

〈v||β 〉 : (Γ ` β : A,α : A,∆)
Cut

〈v||α〉 : (Γ ` α : A,∆)
CR

Γ ` µα.〈v||α〉 : A | ∆ AR

Γ ` v : A | ∆ | α : A ` α : A
VL

〈v||α〉 : (Γ ` α : A,∆)
Cut

〈v||α〉 : (Γ ` β : B,α : A,∆)
WR

Γ ` µβ .〈v||α〉 : B | α : A,∆
AR

and symmetrically for co-terms. Likewise, if we want to exchange the current active type of
a (co-)term with another one in the environment, we need to take a similar detour through
a command which explicitly switches the primary input or output channel as follows:

Γ ` v : A | β : B,∆ | α : A ` α : A
VL

〈v||α〉 : (Γ ` α : A,β : B,∆)
Cut

〈v||α〉 : (Γ ` β : B,α : A,∆)
XR

Γ ` µβ .〈v||α〉 : B | α : A,∆
AR

x : A ` x : A | VR
Γ,y : B | e : A ` ∆

〈x||e〉 : (Γ,y : B,x : A ` ∆)
Cut

〈x||e〉 : (Γ,x : A,y : B ` ∆)
XL

Γ,x : A | µ̃y.〈x||e〉 : B ` ∆
AL

4.1 Two dual substitutions

Having examined the static properties of the µµ̃-calculus—its syntax and types—we still
need to consider the dynamic properties of µµ̃ , to explain what it means to run a program.
To answer the question “what is computation in the sequent calculus?” we turn to cut
elimination (previously mentioned in Section 3.1) which outlines a method of reducing
commands as the main unit of computation. In other words, computation in µµ̃ is the
behavior that results from cutting together a compatible producer and consumer in a com-
mand, so that they may meaningfully interact with one another. In the bare µµ̃-calculus
with no logical connectives, we can only have three forms of commands: a cut between
(co-)variables 〈x||α〉, a cut with an output abstraction 〈µα.c||e〉, and a cut with an input
abstraction 〈v||µ̃x.c〉. In the first case, a command 〈x||α〉 represents a basic final state that
can reduce no further, and even though its typing derivation contains a Cut, it is a trivial
sort of cut that corresponds more closely to a passive version of LK’s Ax:

x : A ` x : A | VR | α : A ` α : A
VL

〈x||α〉 : (x : A ` α : A)
Cut

In the second two cases, we can capture the meaning of input and output abstractions via
substitution —written as {v/x} and {e/α}—in the style of β reduction in the λ -calculus
as illustrated by the following µ and µ̃ operational rules:

(µ) 〈µα.c||e〉 7→ c{e/α} (µ̃) 〈v||µ̃x.c〉 7→ c{v/x}

The µ̃ reduction step substitutes the term v for the variable x introduced by an input
abstraction, distributing it into the command c to the points where it is referenced. The
µ reduction step is the mirror image, which substitutes a co-term e for a co-variable α

introduced by an output abstraction. Both of these substitution operations must take care
to avoid capturing the free variables of the substituted (co-)terms as in the λ -calculus.
Definitions of capture-avoiding substitution and the free variables found in (co-)terms and
commands (denoted by FV(c), FV(V), FV(e)) can be found in Appendix C.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 23

The µ and µ̃ substitution steps eliminate a cut, but how do they correspond to cut
elimination in LK? The procedure described in Section 3.1 does not appear to use a
substitution operation, only a collection of small, local manipulations of cuts. As it turns
out, the substitutions used by the µ and µ̃ rules correspond to the structural steps of LK
cut elimination, except performed all at once instead of incrementally. Cuts of a passive
proposition can be viewed as a substitution for a (co-)variable and the substitution opera-
tion itself exhaustively applies the steps which commute logical and structural rules with
passive cuts. For example, the commutation of an active cut with a passive cut corresponds
to the equation

〈v||e〉
{

v′/x
}
= 〈v

{
v′/x

}
||e
{

v′/x
}
〉

that defines one case of substitution. In effect, this transports a passive cut to all of its active
positions within a proof as one step, and the activation rules for µ- and µ̃-abstractions
explicitly signal that a cut is passive. And as additional logical rules are added later in
Section 5, similar commutations are uniformly characterized by the standard rules of sub-
stitution. The cut elimination steps for weakening and contraction on the active proposition
of a cut then correspond to properties that the substitution operation satisfies:

c{e/α}= c (α /∈ FV(c)) (c{α/β}){e/α}= c{e/β}{e/α} (α /∈ FV(e))

c{v/x}= c (x /∈ FV(c)) (c{x/y}){v/x}= c{v/y}{v/x} (x /∈ FV(v))

or in other words, substituting for a (co-)variable that is never referenced does nothing,
and substituting for a merged pair of (co-)variables is the same as substituting for both
individually.

We can now give two different formalizations of the dynamic semantics of the µµ̃-
calculus, each of which have their own distinct purpose. The first is the operational seman-
tics of µµ̃ that explains exactly step-by-step how to execute a command by performing
repetitions of the µ and µ̃ operational rules (i.e., the reflexive, transitive closure of the 7→
relation written 7→→). Note that, unlike in the λ -calculus, the next step of the operational
semantics is immediately obvious in the µµ̃-calculus and needs no search to identify: the
next step of a command is always found at the top-level if there is one.

The second is the rewriting theory of µµ̃ that provides more opportunities for reductions,
including performing a step before it would normally occur during the execution of a
command (as in a pre-processing pass or optimization) or additional reductions that do not
occur during execution (i.e., are not one of the operational rules defining 7→) but preserve
its behavior nonetheless. Single-step rewriting is denoted by→ and allows the reductions
to apply in any context (i.e., → is compatibly closed), and the multi-step rewriting is
denoted by →→ (i.e., →→ is the reflexive, transitive closure of →). For the µµ̃-calculus,
single-step rewriting includes the µ and µ̃ operational rules given above, as well as some
additional rules. In particular, the following ηµ and ηµ̃ reductions which eliminate trivial
output and input abstractions are allowed, because they do not change the extensional
behavior of the (co-)terms:

(ηµ) µα.〈v||α〉 → v (α /∈ FV(v)) (ηµ̃) µ̃x.〈x||e〉 → e (x /∈ FV(e))

In other words, the term that sends the output of v to α only to forward that information
along as its own output is the same as v itself. Dually, the co-term that binds its input to x

ZU064-05-FPR sequent-intro 22 March 2018 17:26

24 P. Downen and Z. M. Ariola

only to forward that information along to another co-term e can be written more simply as
just e. In all, the rewriting theory of µµ̃ is formed by repetitions of µµ̃ηµ ηµ̃ reductions in
any context, and is defined in more detail in Appendix C.3.

4.2 The fundamental dilemma of computation

Unfortunately, the aforementioned operational semantics for µµ̃ is non-deterministic, to
the point where program execution may take completely divergent and unrelated paths. The
non-determinism of the µµ̃-calculus corresponds to the fact that the cut elimination for LK
included critically non-deterministic choices between structural rules. The phenomenon is
embodied by the fundamental conflict between input and output abstractions, as shown by
the two dual µ and µ̃ reductions for performing substitution:

c1 {(µ̃x.c2)/α}← [µ 〈µα.c1||µ̃x.c2〉 7→µ̃ c2 {(µα.c1)/x}

Both the term µα.c1 and co-term µ̃x.c2 are fighting for control in the above command, and
either one may win. The non-deterministic outcome of this conflict is exemplified in the
case where neither α nor x are referenced in their respective commands by weakening:

c1← [µ 〈µ .c1||µ̃ .c2〉 7→µ̃ c2

showing that programs may produce different results each time they are run, since the
same starting point may step to two different and completely arbitrary commands. This
form of divergent reduction paths is called a critical pair and is evidence that the rewriting
theory is not confluent. A confluent system guarantees that reductions can be applied in
any order and still reach the same result. From the perspective of programming language
semantics, this type of non-determinism can be undesirable since it makes it impossible
to predict a single definitive result of a program since there may be multiple incompatible
results depending on the choices made during execution. If we want to regain properties
like confluence or determinism, which are enjoyed by the λ -calculus, then some of these
freedoms must be curtailed.

In order to recover determinism for the sequent calculus, Curien and Herbelin (2000)
observed that we only need to choose an evaluation strategy that deterministically picks
the next step to take by giving priority to one reduction over the other:

Call-by-value consists in giving priority to the µ redexes,
while call-by-name gives priority to the µ̃ redexes.

Prioritization between the two opposed sides means that there must be some potential µ

or µ̃ redexes that we could reduce but choose not to, thereby yielding priority to the other
side of the command. From another viewpoint, choosing a priority between the two sides
of a command is the same thing as choosing a restriction on the terms and co-terms that
can be substituted by the µ and µ̃ rules. And reversing directions, choosing which terms
and co-terms are substitutable by µ and µ̃ reductions also chooses the evaluation strategy.

Reflecting the above observation back to the calculus, we can restore determinacy to
the operational semantics and confluence to the rewriting theory by making the substitu-
tion rules strategy-aware: µ̃ only substitutes values for variables and µ only substitutes
co-values for co-variables. In other words, the decision of which values and co-values

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 25

V ∈ Valuev ::= x E ∈ CoValuev ::= e

Operational rules:

(µv) 〈µα.c||E〉 7→ c{E/α} (µ̃v) 〈V ||µ̃x.c〉 7→ c{V/x}

Rewriting rules:

(ηµ) µα.〈v||α〉 → v (α /∈ FV(v)) (ηµ̃) µ̃x.〈x||e〉 → e (x /∈ FV(e))

c 7→µv µ̃v c′

c→µv µ̃v c′
µvµ̃v

Fig. 7. The call-by-value (v) semantics for the core µµ̃v-calculus.

V ∈ Valuen ::= v E ∈ CoValuen ::= α

Operational rules:

(µn) 〈µα.c||E〉 7→ c{E/α} (µ̃n) 〈V ||µ̃x.c〉 7→ c{V/x}

Rewriting rules:

(ηµ) µα.〈v||α〉 → v (α /∈ FV(v)) (ηµ̃) µ̃x.〈x||e〉 → e (x /∈ FV(e))

c 7→µn µ̃n c′

c→µn µ̃n c′
µnµ̃n

Fig. 8. The call-by-name (n) semantics for the core µµ̃n-calculus.

are substitutable is enough information to determine an evaluation strategy in the µµ̃-
calculus. To get call-by-value reduction, we can restrict the notion of value to exclude
output abstractions and leave co-values unrestricted, thereby giving priority to the µ re-
dexes as shown in Fig. 7. Dually for call-by-name reduction, we can restrict the notion of
co-value to exclude input abstractions and leave values unrestricted, thereby giving priority
to the µ̃ redexes as shown in Fig. 8. Notice that in any case, the ηµ and ηµ̃ reductions
are not affected by the restrictions on (co-)values, because they do no substitution and
are sound under any choice of evaluation strategy. These restrictions on substitution give
us exactly Curien and Herbelin’s (2000) notions of the call-by-value and call-by-name,
which restores determinacy and confluence to the semantics of µµ̃ . Excluding a (co-)term
from the collection of (co-)values effectively prioritizes it by blocking opposing reductions,
whereas including a (co-)term as a (co-)value diminishes its priority since it can be deleted
or duplicated by substitution.

5 The dual calculi

With the core µµ̃ language firmly in place, we can now enrich it with additional pro-
gramming constructs that correspond to the logical elements—the connectives and logical
rules—of Gentzen’s LK sequent calculus. The syntax and typing rules for these extra
logical constructs are shown in Fig. 9, which extends the core µµ̃-calculus from Fig. 6.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

26 P. Downen and Z. M. Ariola

A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || ¬A || A→ B || A−B || ∀X .A || ∃X .A

v ∈ Term ::= x || µα.c || () || (v,v) || in1(v) || in2(v) || not(e) || λx.v || e · v || ΛX .v || B@v

e ∈ CoTerm ::= α || µ̃x.c || [] || out1[e] || out2[e] || [e,e] || not[v] || v · e || λ̃α.e || B@e || Λ̃X .e

c ∈Command ::= 〈v||e〉

Core rules:

x : A ` x : A | VR | α : A ` α : A
VL

c : (Γ ` α : A,∆)
Γ ` µα.c : A | ∆ AR

c : (Γ,x : A ` ∆)

Γ | µ̃x.c : A ` ∆
AL

Γ ` v : A | ∆ Γ′ | e : A ` ∆′

〈v||e〉 : (Γ′,Γ ` ∆′,∆)
Cut

Structural rules:
The same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

Γ ` () : 1 | ∆
1R

no 1L rule no 0R rule Γ | [] : 0 ` ∆
0L

Γ ` v : A | ∆ Γ ` v′ : B | ∆
Γ ` (v,v′) : A×B | ∆

×R
Γ | e : A ` ∆

Γ | out1[e] : A×B ` ∆
×L1

Γ | e : B ` ∆

Γ | out2[e] : A×B ` ∆
×L2

Γ ` v : A | ∆
Γ ` in1(v) : A+B | ∆

+R1
Γ ` v : B | ∆

Γ ` in2(v) : A+B | ∆
+R2

Γ | e : A ` ∆ Γ | e′ : B ` ∆

Γ | [e,e′] : A+B ` ∆
+L

Γ | e : A ` ∆

Γ ` not(e) : ¬A | ∆
¬R

Γ ` v : A | ∆
Γ | not[v] : ¬A ` ∆

¬L

Γ,x : A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

→R
Γ ` v : A | ∆ Γ′ | e : B ` ∆′

Γ′,Γ | v · e : A→ B ` ∆′,∆
→L

Γ ` v : A | ∆ Γ′ | e : B ` ∆′

Γ′,Γ ` e · v : A−B | ∆′,∆
−R

Γ | e : A ` α : B,∆

Γ | λ̃α.e : A−B ` ∆
−L

Γ ` v : A | ∆ X /∈ FV(Γ ` ∆)

Γ ` ΛX .v : ∀X .A | ∆
∀R

Γ | e : A{B/X} ` ∆

Γ | B@e : ∀X .A ` ∆
∀L

Γ ` v : A{B/X} | ∆
Γ ` B@v : ∃X .A | ∆

∃R
Γ | e : A ` ∆ X /∈ FV(Γ ` ∆)

Γ | Λ̃X .e : ∃X .A ` ∆
∃L

Fig. 9. The syntax and types for the dual calculi.

To help syntactically distinguish terms from co-terms, we use the notational convention
throughout that round parentheses are the grouping brackets for terms, and square brackets
are the grouping brackets for co-terms. The correspondence with LK is that by erasing
program-level constructs of a typing derivation and replacing type constructors with the
corresponding logical connectives (replacing → with ⊃, × with ∧, etc.,), we get an LK
proof derivation: there is an LK proof derivation of Γ ` ∆ if and only if there is a typing

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 27

derivation of c : (Γ′ ` ∆′) for the Γ′,∆′ corresponding to Γ,∆ and some command c, and
similarly for typed terms (Γ′ ` v : A′ | ∆′) and co-terms (Γ′ | e : A′ ` ∆′).

This language combines both Curien and Herbelin’s (2000) λ µµ̃-calculus (the portion
associated with implication) and Wadler’s (2003) dual calculus (the portion associated with
conjunction, disjunction, and negation which was directly inspired by λ µµ̃) into a single
calculus corresponding to all of the simply-typed LK sequent calculus. Furthermore, the
quantifiers of LK are interpreted as a sequent calculus version of system F (Reynolds, 1983;
Girard et al., 1989): universal quantification (∀) acts as an abstraction over types analogous
to implication, and existential quantification (∃) is the mirror image of ∀. We refer to this
combined language here as the “dual calculi” because, as we will soon see, the language
is the basis for two different but highly related calculi that exhibit dual computational
behavior to one another.

Since the right introduction rules for logical connectives are shared by both natural
deduction and the sequent calculus, the dual calculi terms for creating results of product,
sum, and function types have the same form as in the λ -calculus. Units are introduced by
a constant, (), products are introduced by pairing, (v,v′), sums are introduced by injection,
in1(v) and in2(v), and functions are introduced by λ -abstractions, λx.v. Additionally, the
terms for creating results of universally quantified types are Λ-abstractions, ΛX .v, as in
system F, and the results of existentially quantified types are “masked” terms, B@v, that
hide some occurrences of the type B in the underlying term v from being visible from the
outside. In contrast, the left introduction rules of the sequent calculus are distinct from the
right elimination rules of natural deduction, so the difference between the λ -calculus and
the dual calculi really appears when results are used.

Instead of function application, the left implication introduction →L builds a co-term
that represents a call-stack. If v is a term that produces a result of type A, and e is a co-term
that consumes a result of type B, then the call-stack v · e is a co-term that works with a
function value of type A→ B by feeding it v as an argument and sending the returned
result to e. For example, given that x1 : A1, x2 : A2, x3 : A3, and β : B, then the call-stack
x1 · [x2 · [x3 ·β]] is expecting to consume a function of type A1→ (A2→ (A3→ B)):

x1 : A1 ` x1 : A1 |
VR

x2 : A2 ` x2 : A2 |
VR

x3 : A3 ` x3 : A3 |
VR | β : B ` β : B

VL

x3 : A3 | x3 ·β : A3→ B ` β : B
→L

x3 : A3,x2 : A2 | x2 · x3 ·β : A2→ A3→ B ` β : B
→L

x3 : A3,x2 : A2,x1 : A1 | x1 · x2 · x3 ·β : A1→ A2→ A3→ B ` β : B
→L

Like the common notational convention in the simply-typed λ -calculus that the function
type constructor associates to the right, so that A1→ A2→ A3→ B = A1→ (A2→ (A3→
B)), we adopt a similar notational convention that the call stack constructor associates to
the right, so that x1 · x2 · x3 ·β = x1 · [x2 · [x3 ·β]].

The left introductions for the other type constructors follow a similar pattern, with each
one building a co-term that expects to consume a value of that type. There are two left
conjunction introductions corresponding to the two projections out of a product. If e1 is a
co-term that consumes a value of type A, then ×L1 builds the co-term out1[e1] that works
with a value of type A×B by projecting out the first element of the product and sending it to
e1 when needed (and similarly for the second projection out2[e2] built by×L2). If e1 and e2

ZU064-05-FPR sequent-intro 22 March 2018 17:26

28 P. Downen and Z. M. Ariola

are co-terms that consume values of type A and B, respectively, then +L builds the co-term
[e1,e2] that works with a value of type A+B by checking its constructor: an injection of
the form in1(v1) has the value of v1 sent to e1 as needed, and likewise an injection of the
form in2(v2) has the value of v2 sent to e2 as needed. The co-term for the empty type 0
is a constant, [], which observes an impossible term that cannot produce any output. The
co-term for ∀L is similar to the call stacks of→L, so that if e is a co-term that consumes
a value at the particular type A{B/X}, then B@e works with a value of the general type
∀X .A by first specializing the polymorphic value and then passing it along to e. Perhaps the
most unusual co-term comes from ∃L, but this is just the mirror image of the ∀R term. If e
is a co-term that consumes a value of type A, containing a generic type variable X , then ∃L
gives the abstracted co-term Λ̃X .e that works with a value of type ∃X .A by instantiating X
with the value’s hidden type before passing the underlying value to e.

The two type constructors that are not typically found in the λ -calculus, but sometimes
in a sequent calculus like LK or the dual calculi, are negation and subtraction. The negation
type ¬A represents an inversion between producers and consumers—terms and co-terms—
during computation. Intuitively, negation expresses a form of continuations: a term of type
¬A is actually a consumer of A. The right negation introduction allows terms to contain
consumers, so that if e is a co-term expecting an input of type A then ¬R builds the term
not(e). Dually, the left negation introduction allows co-terms to contain producers, so that
if v is a term expecting to output a result of type A then ¬L builds the co-term not[v]. When
a negated term and co-term meet each other in a command, the inversion is undone so that
their underlying components change places and continue the interaction. The subtraction
type A−B is dual to a function type: whereas a function represents an answer that depends
on another answer, a subtraction represents a question that depends on another question.
The left subtraction introduction allows for consumer transformations which are mirror
images of λ -abstractions, so that the −L rule builds a co-term of the form λ̃α.e of type
A−B when e is a consumer of A that references a co-variable α of type B. On the other
side, the right subtraction introduction pairs up a producer and a consumer, so that if v
produces an A result and e consumes a B result then the −R rule builds the term e · v of
type A−B. Subtraction gives another way for continuations to appear in terms, so that a
result of type A−B yields both an answer (A) and a question (B) at the same time.

The above intuition on the dynamic meaning of types in the dual calculi can be codified
into an operational semantics. Recall from Section 4.2 that the semantics of the core µµ̃-
calculus was split in two to restore determinacy and confluence: one semantics correspond-
ing to call-by-value and the other to call-by-name. Likewise, there are two deterministic
operational semantics and two confluent rewriting theories for the dual calculi, so that the
same language bears two different calculi (hence the name). Since both semantics of the
core µµ̃-calculus are already given in Figs. 7 and 8, we only need to suitably expand the
notions of value and co-value to accommodate the new (co-)term introductions and explain
the logical steps of cut elimination (referred to by the common name β) that occur when
two opposed introduction forms of the same type meet in a command. The call-by-value
β operational rules are given in Fig. 10 and the call-by-name β operational rules are given
in Fig. 11, both of which extend the core semantics from Figs. 7 and 8, respectively. Thus,
we end up with the call-by-value µvµ̃vβv operational semantics and µvµ̃vηµ ηµ̃ βv rewrit-
ing theory as well as the call-by-name µnµnβn operational semantics and µnµnηµ ηµ̃ βn

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 29

V ∈ Valuev ::= x || (V,V) || in1(V) || in2(V) || not(e) || λx.v || e ·V || ΛX .v || B@V

E ∈CoValuev ::= e

Operational rules:

(β×v) 〈(V1,V2)||outi[E]〉 7→ 〈Vi||E〉 (β+
v) 〈ini(V)||[E1,E2]〉 7→ 〈V ||Ei〉

(β¬v) 〈not(e)||not[v]〉 7→ 〈v||e〉

(β→v) 〈λx.v||V ·E〉 7→ 〈v{V/x}||E〉 (β−v) 〈E ·V ||λ̃α.e〉 7→ 〈V ||e{E/α}〉

(β∀v) 〈ΛX .v||B@E〉 7→ 〈v{B/X}||E〉 (β∃v) 〈B@V ||Λ̃X .e〉 7→ 〈V ||e{B/X}〉

Rewriting rules:

c 7→βv
c′

c→βv
c′

βv

Fig. 10. The β semantics for the call-by-value (v) half of the dual calculi.

V ∈ Valuen ::= v

E ∈ CoValuen ::= α || out1[E] || out2[E] || [E,E] || not[v] || v ·E || λ̃α.e || B@E || Λ̃X .e

Operational rules:

(β×n) 〈(V1,V2)||outi[E]〉 7→ 〈Vi||E〉 (β+
n) 〈ini(V)||[E1,E2]〉 7→ 〈V ||Ei〉

(β¬n) 〈not(e)||not[v]〉 7→ 〈v||e〉

(β→n) 〈λx.v||V ·E〉 7→ 〈v{V/x}||E〉 (β−v) 〈E ·V ||λ̃α.e〉 7→ 〈V ||e{E/α}〉

(β∀n) 〈ΛX .v||B@E〉 7→ 〈v{B/X}||E〉 (β∃n) 〈B@V ||Λ̃X .e〉 7→ 〈V ||e{B/X}〉

Rewriting rules:

c 7→βn
c′

c→βn
c′

βn

Fig. 11. The β semantics for the call-by-name (n) half of the dual calculi.

rewriting theory for the dual calculi. The β×, β+ and β¬ rules come from Wadler’s (2003)
dual calculus, whereas the β→ rule is inspired by Curien and Munch-Maccagnoni’s (2010)
revision of the λ µµ̃-calculus. The reason this differs from the original β→ rule (Curien
and Herbelin, 2000) for the λ µµ̃-calculus,

〈λx.v||v′ · e〉 7→ 〈v′||µ̃x.〈v||e〉〉 x /∈ FV(e)

will show up later on in Section 5.1.
Notice that, like in the core µµ̃-calculus, the form of the operational β rules are the same

in both semantics, so that the only difference is the definition of value and co-value referred
to in those rules. The rule of thumb is that a β rule only applies when an introductory
value and co-value interact in a command. For example, the call-by-value β×v rule will
only project from a pair value to extract a component that is also a value. These restrictions
are captured in the call-by-value definition of value that admits only “simple” terms and
hereditarily excludes complex terms like µα.c (representing an arbitrarily complex com-
putation before yielding a result on α) from the values of product and sum types, which

ZU064-05-FPR sequent-intro 22 March 2018 17:26

30 P. Downen and Z. M. Ariola

matches the behavior of products and sums in strict functional languages like ML. How-
ever, there is no such restriction on co-terms in the call-by-value operational semantics,
and as such any co-term counts as a co-value. Dually, the call-by-name β×n rule will only
project out of a pair when it is needed by a projection co-value to send that component
to the underlying co-value. These restrictions are captured in the call-by-name definition
of co-value that admits only “strict” co-terms and hereditarily excludes complex co-terms
like µ̃x.c (representing an arbitrarily complex computation before demanding a result for
x) from the co-values of product and sum types. However, there is no restriction on terms
in the call-by-name operational semantics, and as such any term counts as a value.

Untyped fixed points and infinite loops

It’s worthwhile to mention that although the dual calculi are primarily seen as typed lan-
guages, their semantics do not use any type information to run commands. We can therefore
execute untyped commands as well as typed ones, which of course creates the possibility
of getting stuck at fatal type errors. Untyped commands also open up the possibility of
running general recursive programs, which can be encoded in a similar manner as in the
λ -calculus without any additional features of the language. For example, Curry’s untyped
fixed-point Y combinator in the λ -calculus:

Y , λ f .(λx. f (x x)) (λx. f (x x))

can be analogously defined in the dual calculi using functions as:

Y , λ f .µα.〈λx.µβ .〈 f ||µγ.〈x||x · γ〉 ·β 〉||(λx.µβ .〈 f ||µγ.〈x||x · γ〉 ·β 〉) ·α〉

The two share analogous behavior: in the λ -calculus Y f = f (Y f) and in the dual calculi
〈Y || f ·α〉 = 〈 f ||µβ .〈Y || f ·β 〉 ·α〉. Also analogous to the non-terminating untyped term
Ω, (λx.x x) (λx.x x) in the λ -calculus, the dual calculi both have non-terminating untyped
commands, which can be written using functions or more simply with negation:

Ω, 〈not(µ̃x.〈x||not[x]〉)||not[µα.〈not(α)||α〉]〉

For example, in the call-by-name operational semantics, we have the following infinite
execution of Ω:

Ω, 〈not(µ̃x.〈x||not[x]〉)||not[µα.〈not(α)||α〉]〉
7→β¬n 〈µα.〈not(α)||α〉||µ̃x.〈x||not[x]〉〉
7→µ̃n 〈µα.〈not(α)||α〉||not[µα.〈not(α)||α〉]〉
7→µn 〈not(not[µα.〈not(α)||α〉])||not[µα.〈not(α)||α〉]〉
7→β¬n 〈µα.〈not(α)||α〉||not[µα.〈not(α)||α〉]〉
7→µn . . .

Note that encoding general recursion in the untyped sequent calculus requires some logical
connective, like negation or implication. The core µµ̃-calculus gives a more restrained
language of binders and substitution that does not express general recursion even in the
untyped calculus, where general (and non-confluent) µ- and µ̃-reduction is still strongly
normalizing (Polonovski, 2004)—that is, there are no infinite sequences of µµ̃-reductions.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 31

This fact is in contrast with the untyped λ -calculus which can express general recursion,
because β -reduction is not strongly normalizing in the untyped calculus.

5.1 Focusing on computation

There is a problem lurking in the β -based operational semantics for the dual calculi.
Consider how we would evaluate the projection out1((f 1),2) in a call-by-value functional
language like ML. First we would compute the application f 1 to construct the pair value,
then we would compute the out1 projection of that pair and extract the value returned by
f 1 as the result of the expression. However, if we represent this program as the following
command in the call-by-value dual calculus, where α stands for the empty or top-level
context that is implicit in the functional expression:

〈((µβ .〈 f ||1 ·β 〉),2)||out1[α]〉

we find that no operational rule matches this command, so we are stuck! This isn’t just a
problem with the call-by-value operational semantics. The command:

〈(1,2)||out1[µ̃x.〈0||α〉]〉

which corresponds to the expression letx = out1(1,2) in0 in a functional language, is also
stuck in the call-by-name operational semantics.

This is clearly an undesirable situation that breaks the connection between the λ -calculus
and dual calculi—we should not get stuck on such commands with unfinished computa-
tion in introduction forms—so something needs to be done to refocus the attention in a
command to the next step of computation. As it stands now in the dual calculi, we either
have too many programs with unexplained behavior, or too few behaviors for executing
programs. Correspondingly, there are two general techniques to remedy prematurely stuck
commands and restore the connection between λ -calculus and the dual calculi:

(1) The static approach (Curien and Herbelin, 2000) removes the superfluous parts of
the syntax that cause β reduction to get stuck, but are not necessary to express all
the same computations as the original language.

(2) The dynamic approach (Wadler, 2003) adds the necessary extra steps to the oper-
ational semantics that lift buried computations to the top of the command, so that
they are exposed and may take over control of the computation.

Both of these techniques can be viewed as an application of an idea called focusing (An-
dreoli, 1992; Laurent, 2002) from proof search at different points in a programs life—either
at “run time” or at “compile time”—to make sure that the call-by-value and call-by-name
semantics are complete without missing out on any essential capabilities of the language.

Static focusing

For the static method of focusing, consider which syntactic patterns could lead to β -
stuck commands. In the call-by-value command above, 〈((µβ .〈 f ||1 ·β 〉),2)||out1[α]〉, the
problem is that a pair with a non-value component (namely the first one) is interact-
ing with a projection co-value. Because the pair does not have values for both compo-
nents, the β×v operational step does not apply. Dually, the call-by-name command above,

ZU064-05-FPR sequent-intro 22 March 2018 17:26

32 P. Downen and Z. M. Ariola

A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || ¬A || A→ B || A−B || ∀X .A || ∃X .A

v ∈ Term ::=V || µα.c

V ∈ Value ::= x || () || (V,V) || in1(V) || in2(V) || not(e) || λx.v || e ·V || ΛX .v || B@V

e ∈ CoTerm ::= α || µ̃x.c || [] || out1[e] || out2[e] || [e,e] || not[v] ||V · e || λ̃α.e || B@e || Λ̃X .e

c ∈ Command ::= 〈v||e〉
Sequent ::= (Γ ` v : A | ∆) || (Γ `V : A ; ∆) || (Γ | e : A ` ∆) || c : (Γ ` ∆)

Core rules:

x : A ` x : A ; VR | α : A ` α : A
VL

c : (Γ ` α : A,∆)
Γ ` µα.c : A | ∆ AR

c : (Γ,x : A ` ∆)

Γ | µ̃x.c : A ` ∆
AL

Γ `V : A ; ∆

Γ `V : A | ∆ FR
Γ ` v : A | ∆ Γ′ | e : A ` ∆′

〈v||e〉 : (Γ′,Γ ` ∆′,∆)
Cut

Structural rules:
Γ `V : C ; ∆

Γ `V : C ; α : A,∆
WR

Γ `V : C ; ∆

Γ,x : A `V : C ; ∆
WL

Γ `V : C ; β : A,α : A,∆
Γ `V {α/β} : C ; α : A,∆

CR
Γ,x : A,y : A `V : C ; ∆

Γ,x : A `V {x/y} : C ; ∆
CL

Γ `V : C ; ∆,α : A,β : B,∆′

Γ `V : C ; ∆,β : B,α : A,∆′
XR

Γ′,y : B,x : A,Γ `V : C ; ∆

Γ′,x : A,y : B,Γ `V : C ; ∆
XL

And the same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

Γ ` () : 1 ; ∆
1R

no 1L rule no 0R rule Γ | [] : 0 ` ∆
0L

Γ `V : A ; ∆ Γ `V ′ : B ; ∆

Γ ` (V,V ′) : A×B ; ∆
×R

Γ | e : A ` ∆

Γ | out1[e] : A×B ` ∆
×L1

Γ | e : B ` ∆

Γ | out2[e] : A×B ` ∆
×L2

Γ `V : A ; ∆

Γ ` in1(V) : A+B ; ∆
+R1

Γ `V : B ; ∆

Γ ` in2(V) : A+B ; ∆
+R2

Γ | e : A ` ∆ Γ | e′ : B ` ∆

Γ | [e,e′] : A+B ` ∆
+L

Γ | e : A ` ∆

Γ ` not(e) : ¬A ; ∆
¬R

Γ ` v : A | ∆
Γ | not[v] : ¬A ` ∆

¬L

Γ,x : A ` v : B | ∆
Γ ` λx.v : A→ B ; ∆

→R
Γ `V : A ; ∆ Γ′ | e : B ` ∆′

Γ,Γ′ |V · e : A→ B ` ∆,∆′
→L

Γ `V : A ; ∆ Γ′ | e : B ` ∆′

Γ′,Γ ` e ·V : A−B ; ∆′,∆
−R

Γ | e : A ` α : B,∆

Γ | λ̃α.e : A−B ` ∆
−L

Γ ` v : A | ∆ X /∈ FV(Γ ` ∆)

Γ ` ΛX .v : ∀X .A ; ∆
∀R

Γ | e : A{B/X} ` ∆

Γ | B@e : ∀X .A ` ∆
∀L

Γ `V : A{B/X} ; ∆

Γ ` B@V : ∃X .A ; ∆
∃R

Γ | e : A ` ∆ X /∈ FV(Γ ` ∆)

Γ | Λ̃X .e : ∃X .A ` ∆
∃L

Fig. 12. LKQ: The focalized sub-syntax and types for the call-by-value dual calculus.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 33

A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || ¬A || A→ B || A−B || ∀X .A || ∃X .A

v ∈ Term ::= x || µα.c || () || (v,v) || in1(v) || in2(v) || not(e) || λx.v || E · v || ΛX .v || B@v

e ∈ CoTerm ::= E || µ̃x.c

E ∈ CoValue ::= α || [] || out1[E] || out2[E] || [E,E] || not[v] || v ·E || λ̃α.e || B@E || Λ̃X .e

c ∈ Command ::= 〈v||e〉
Sequent ::= (Γ ` v : A | ∆) || (Γ | e : A ` ∆) || (Γ ; E : A ` ∆) || c : (Γ ` ∆)

Core rules:

x : A ` x : A ; VR | α : A ` α : A
VL

c : (Γ ` α : A,∆)
Γ ` µα.c : A | ∆ AR

c : (Γ,x : A ` ∆)

Γ | µ̃x.c : A ` ∆
AL

Γ ` v : A | ∆ Γ′ | e : A ` ∆′

〈v||e〉 : (Γ′,Γ ` ∆′,∆)
Cut

Γ ; E : A ` ∆

Γ | E : A ` ∆
FL

Structural rules:
Γ ; E : C ` ∆

Γ ; E : C ` α : A,∆
WR

Γ ; E : C ` ∆

Γ,x : A ; E : C ` ∆
WL

Γ ; E : C ` β : A,α : A,∆
Γ ; E {α/β} : C ` α : A,∆

CR
Γ,x : A,y : A ; E : C ` ∆

Γ,x : A ; E {x/y} : C ` ∆
CL

Γ ; E : C ` ∆,α : A,β : B,∆′

Γ ; E : C ` ∆,β : B,α : A,∆′
XR

Γ′,y : B,x : A,Γ ; E : C ` ∆

Γ′,x : A,y : B,Γ ; E : C ` ∆
XL

And the same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

Γ ` () : 1 | ∆
1R

no 1L rule no 0R rule Γ ; [] : 0 ` ∆
0L

Γ ` v : A | ∆ Γ ` v′ : B | ∆
Γ ` (v,v′) : A×B | ∆

×R
Γ ; E : A ` ∆

Γ ; out1[E] : A×B ` ∆
×L1

Γ ; E : B ` ∆

Γ ; out2[E] : A×B ` ∆
×L2

Γ ` v : A | ∆
Γ ` in1(v) : A+B | ∆

+R1
Γ ` v : B | ∆

Γ ` in2(v) : A+B | ∆
+R2

Γ ; e : A ` ∆ Γ ; e′ : B ` ∆

Γ ; [E,E ′] : A+B ` ∆
+L

Γ | e : A ` ∆

Γ ` not(e) : ¬A | ∆
¬R

Γ ` v : A | ∆
Γ ; not[v] : ¬A ` ∆

¬L

Γ,x : A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

→R
Γ ` v : A | ∆ Γ′ ; E : B ` ∆′

Γ,Γ′ ; v ·E : A→ B ` ∆,∆′
→L

Γ ` v : A | ∆ Γ′ ; E : B ` ∆′

Γ′,Γ ` e · v : A−B | ∆′,∆
−R

Γ | e : A ` α : B,∆

Γ ; λ̃α.e : A−B ` ∆
−L

Γ ` v : A | ∆ X /∈ FV(Γ ` ∆)

Γ ` ΛX .v : ∀X .A | ∆
∀R

Γ ; E : A{B/X} ` ∆

Γ ; B@E : ∀X .A ` ∆
∀L

Γ ` v : A{B/X} ` ∆

Γ ` B@v : ∃X .A | ∆
∃R

Γ | e : A ` ∆ X /∈ FV(Γ ` ∆)

Γ ; Λ̃X .e : ∃X .A ` ∆
∃L

Fig. 13. LKT: The focalized sub-syntax and types for the call-by-name dual calculus.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

34 P. Downen and Z. M. Ariola

〈(1,2)||out1[µ̃x.〈0||α〉]〉, puts a pair value in interaction with a projection that has a non-
co-value component. Because the projection does not contain a co-value, the β×n opera-
tional step does not apply. After examining all the βv rules, we see that the call-by-value βv
operational semantics is only equipped to deal with certain introduction forms containing
values (namely the pairing ×R, injection +R, and masking ∃R terms as well as calling
→L co-terms). Similarly, the call-by-name βn operational semantics is only equipped to
deal with certain introduction co-terms containing co-values (namely the projection ×L,
matching +L, and calling→L, and specializing ∀L co-terms).

We can rule out the problematic commands via static focusing by limiting ourselves
to a sub-syntax of the dual calculi. However, since each operational semantics (both call-
by-value and call-by-name) have difficulty with different parts of the syntax, static fo-
cusing effectively splits the language in two: one sub-syntax for each evaluation strategy.
For call-by-value, we must bake in the notion of values into the syntax and restrict the
×R, +R, −R, ∃R, and →L inference rules appropriately. Doing so gives us the LKQ
sub-calculus (Curien and Herbelin, 2000) shown in Fig. 12. Notice how the sub-syntax
of LKQ no longer lets us write terms like in1(µβ .c) and (µβ1.c1,µβ2.c2) because a
µ-abstraction is not a value; instead such terms can only be written with intermediate
bindings as µα.〈µβ .c||µ̃x.〈in1(x)||α〉〉 and µα.〈µβ1.c1||µ̃x1.〈µβ2.c2||µ̃x2.〈(x1,x2)||α〉〉〉
reminiscent of continuation-passing style (Reynolds, 1993). The statically focused calculus
makes the call-by-value evaluation order more explicit in the program itself. Similar such
restrictions are imposed on the term constructors of subtraction and existential types, and
on the argument of function call stacks. Dually for call-by-name, we must bake in the no-
tion of co-values into the syntax and restrict the ×L, +L,→L, ∀L, and −R inference rules
appropriately, giving the LKT sub-calculus shown in Fig. 13. Notice that the sub-syntax
of LKT instead prevents us from writing co-terms like out1[µ̃y.c] and [µ̃y1.c1, µ̃y2.c2] be-
cause a µ̃-abstraction is not a co-value; instead such co-terms can only be written indirectly
as µ̃x.〈µα.〈x||out1[α]〉||µ̃y.c〉 and µ̃x.〈µα1.〈µα2.〈x||[α1,α2]〉||µ̃y2.c2〉||µ̃y1.c1〉 which is
symmetric to the explicit bindings forced by LKQ.

The associated type systems separate the restricted notions of (co-)values from general
(co-)terms through a new form of focused sequent with a stricter sense of active formula
held in a stoup (Girard, 1991). LKQ introduces values in the focus of a stoup on the
right (Γ ` V : A ; ∆) and LKT introduces co-values in the focus of a stoup on the left
(Γ ; E : A ` ∆), which differ from the more general sequents (Γ ` v : A | ∆ and Γ | e :` ∆)
that allow for any (co-)term and not just (co-)values. The new form of sequent calls for
additional focusing structural rules FR (in LKQ) and FL (in LKT) which acknowledge that
every value is a term and every co-value is a co-term. However, the reverse of the focusing
rules—which would say that every (co-)term is a (co-)value—are omitted in LKQ and LKT
because they would collapse the distinction between (co-)values and (co-)terms enforced
by the stoup. As a consequence of the fact that the stoup is one-way, the focus of the
inference rules is forcibly maintained through type checking: working bottom-up, once a
(co-)value is in focus in the stoup, our active attention cannot move to any other type in the
sequent, thereby limiting the derivations we can build on top of focused sequents.

As it turns out (Curien and Munch-Maccagnoni, 2010), distinguishing (co-)values in
type systems like LKQ and LKT correspond with the technique of focusing in proof

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 35

theory developed by Andreoli (1992), Girard (1993, 2001), and Laurent (2002). If we
erase the program-level annotations of typing derivations, the active position in a sequent
disappears but the one-way stoup remains giving us two different sub-logics of the LK
sequent calculus corresponding to LKQ in Fig. 14 and LKT in Fig. 15. Notice how, even
without the explicit notion of values and co-values, the stoup still manages to restrict the
possible derivations that might be built on top of it. For example, a proposition in the
stoup cannot be subject to structural rules. These restrictions imposed by focusing can help
guide the bottom-up development of a proof tree, cutting out unneeded flexibility from the
inference rules that encourage proof development to “fail early.” In the LKQ sub-logic,
when the ∨R1 rule is applied to the conclusion Γ ` A∨B ; ∆ we get the premise Γ ` A ; ∆

where A is still in focus, forcing us to keep working with A to see if we made the correct
choice (perhaps B was the correct disjunct to prove). Dually in the LKT sub-logic, when
the ∧L1 rule is applied to the conclusion Γ ; A∧B ` ∆ we get the premise Γ ; A ` ∆ which
forces us to keep working with the A in focus in case it was the wrong choice (perhaps B
was the correct assumption to use). So in proof search, focusing makes the search algorithm
more efficient by cutting down on the search space, whereas in calculi, focusing identifies
a well-behaved sub-syntax for the operational semantics.

Dynamic focusing

For the dynamic method of focusing, consider which steps were missing from the op-
erational semantics. So instead of ruling out troublesome corners of the syntax, we will
add additional steps to kick-start stuck commands. Recall that in our stuck call-by-value
command, 〈((µβ .〈 f ||1 ·β 〉),2)||out1[α]〉, the β×v operational step was stuck because a pair
with a non-value component needs to interact with a projection. One thing we can do in this
situation is lift the non-value component out of the pair and assign it a name via an input
abstraction. Such a step reveals a hidden µv reduction and lets the computation continue to
bring the application of f to the top:

〈((µβ .〈 f ||1 ·β 〉),2)||out1[α]〉 7→? 〈µβ .〈 f ||1 ·β 〉||µ̃x.〈(x,2)||out1[α]〉〉
7→µv 〈 f ||1 · µ̃x.〈(x,2)||out1[α]〉〉

Now, assuming that the call to f returns the result 3, the computation can continue along
to present 3 as the result to α , yielding the desired answer:

〈 f ||1 · µ̃x.〈(x,2)||out1[α]〉〉 7→→ 〈3||µ̃x.〈(x,2)||out1[α]〉〉
7→µ̃v 〈(3,2)||out1[α]〉
7→

β
×
v
〈3||α〉

That one extra lifting step was all that was needed to continue the computation and get
to the final command. Likewise, the stuck call-by-name command 〈(1,2)||out1[µ̃x.〈0||α〉]〉
has a non-co-value component in the projection, so we can similarly lift the component out
of the projection and assign it a name via an output abstraction:

〈(1,2)||out1[µ̃x.〈0||α〉]〉 7→? 〈µβ .〈(1,2)||out1[β]〉||µ̃x.〈0||α〉〉
7→µ̃n 〈0||α〉

ZU064-05-FPR sequent-intro 22 March 2018 17:26

36 P. Downen and Z. M. Ariola

A,B,C ∈ Proposition ::= X || > || ⊥ || A∧B || A∨B || ¬A || A⊃ B || A−B || ∀X .A || ∃X .A

Γ ∈ Hypothesis ::= A1, . . . ,An

∆ ∈ Consequence ::= A1, . . . ,An

Sequent ::= Γ ` ∆ || Γ ` A ; ∆

Core rules:

A ` A Ax A ` A ;
AxF

Γ ` A,∆ Γ′,A ` ∆′

Γ′,Γ ` ∆′,∆
Cut

Γ ` A ; ∆

Γ ` A,∆ FR

Structural rules:

Γ ` ∆

Γ ` A,∆
WR

Γ `C ; ∆

Γ `C ; A,∆
WRF

Γ ` ∆

Γ,A ` ∆
WL

Γ `C ; ∆

Γ,A `C ; ∆
WLF

Γ ` A,A,∆
Γ ` A,∆ CR

Γ `C ; A,A,∆
Γ `C ; A,∆

CRF
Γ,A,A ` ∆

Γ,A ` ∆
CL

Γ,A,A `C ; ∆

Γ,A `C ; ∆
CLF

Γ ` ∆,A,B,∆′

Γ ` ∆,B,A,∆′
XR

Γ `C ; ∆,A,B,∆′

Γ `C ; ∆,B,A,∆′
XRF

Γ′,B,A,Γ ` ∆

Γ′,A,B,Γ ` ∆
XL

Γ′,B,A,Γ `C ; ∆

Γ′,A,B,Γ `C ; ∆
XLF

Logical rules:

Γ ` > ; ∆
>R

no >L rule no ⊥R rule Γ,⊥ ` ∆
⊥L

Γ ` A ; ∆ Γ ` B ; ∆

Γ ` A∧B ; ∆
∧R

Γ,A ` ∆

Γ,A∧B ` ∆
∧L1

Γ,B ` ∆

Γ,A∧B ` ∆
∧L2

Γ ` A ; ∆

Γ ` A∨B ; ∆
∨R1

Γ ` B ; ∆

Γ ` A∨B ; ∆
∨R2

Γ,A ` ∆ Γ,B ` ∆

Γ,A∨B ` ∆
∨L

Γ,A ` ∆

Γ ` ¬A ; ∆
¬R

Γ ` A,∆
Γ,¬A ` ∆

¬L

Γ,A ` B,∆
Γ ` A⊃ B ; ∆

⊃R
Γ ` A ; ∆ Γ′,B ` ∆′

Γ′,Γ,A⊃ B ` ∆′,∆
⊃L

Γ ` A ; ∆ Γ′,B ` ∆′

Γ′,Γ ` A−B ; ∆′,∆
−R

Γ,A ` B,∆
Γ,A−B ` ∆

−L

Γ ` A,∆ X /∈ FV(Γ ` ∆)

Γ ` ∀X .A ; ∆
∀R

Γ,A{B/X} ` ∆

Γ,∀X .A ` ∆
∀L

Γ ` A{B/X} ; ∆

Γ ` ∃X .A ; ∆
∃R

Γ,A ` ∆ X /∈ FV(Γ ` ∆)

Γ,∃X .A ` ∆
∃L

Fig. 14. The sub-logic of the LK sequent calculus corresponding to LKQ.

Lifting non-(co-)value components out of introduction forms of (co-)terms seems to be the
missing step in β -stuck commands.

The full set of such lifting rules are given in Fig. 16 for the call-by-value semantics and
Fig. 17 for the call-by-name semantics. These operational rules give a minimal set of extra
steps required to reduce hidden computations nested deeply inside terms and co-terms
in a way that matches the call-by-value and call-by-name semantics for the λ -calculus.
Additionally, the rewriting rules are generalized to operate on terms and co-terms directly,
making it possible to lift the appropriate sub-computations out of (co-)terms in any context,
rather than only in commands. For example, the call-by-value operational rule ςv lets us

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 37

A,B,C ∈ Proposition ::= X || > || ⊥ || A∧B || A∨B || ¬A || A⊃ B || A−B || ∀X .A || ∃X .A

Γ ∈ Hypothesis ::= A1, . . . ,An

∆ ∈ Consequence ::= A1, . . . ,An

Sequent ::= Γ ` ∆ || Γ ; A ` ∆

Core rules:

A ` A Ax ; A ` A
AxF

Γ ` A,∆ Γ′,A ` ∆′

Γ′,Γ ` ∆′,∆
Cut

Γ ; A ` ∆

Γ,A ` ∆
FL

Structural rules:

Γ ` ∆

Γ ` A,∆
WR

Γ ; C ` ∆

Γ ; C ` A,∆
WRF

Γ ` ∆

Γ,A ` ∆
WL

Γ ; C ` ∆

Γ,A ; C ` ∆
WLF

Γ ` A,A,∆
Γ ` A,∆ CR

Γ ; C ` A,A,∆
Γ ; C ` A,∆

CRF
Γ,A,A ` ∆

Γ,A ` ∆
CL

Γ,A,A ; C ` ∆

Γ,A ; C ` ∆
CLF

Γ ` ∆,A,B,∆′

Γ ` ∆,B,A,∆′
XR

Γ ; C ` ∆,A,B,∆′

Γ ; C ` ∆,B,A,∆′
XRF

Γ′,B,A,Γ ` ∆

Γ′,A,B,Γ ` ∆
XL

Γ′,B,A,Γ ; C ` ∆

Γ′,A,B,Γ ; C ` ∆
XLF

Logical rules:

Γ ` >,∆ >R
no >L rule no ⊥R rule Γ ;⊥ ` ∆

⊥L

Γ ` A,∆ Γ ` B,∆
Γ ` A∧B,∆

∧R
Γ ; A ` ∆

Γ ; A∧B ` ∆
∧L1

Γ ; B ` ∆

Γ ; A∧B ` ∆
∧L2

Γ ` A,∆
Γ ` A∨B,∆

∨R1
Γ ` B,∆

Γ ` A∨B,∆
∨R2

Γ ; A ` ∆ Γ ; B ` ∆

Γ ; A∨B ` ∆
∨L

Γ,A ` ∆

Γ ` ¬A,∆
¬R

Γ ` A,∆
Γ ; ¬A ` ∆

¬L

Γ,A ` B,∆
Γ ` A⊃ B,∆

⊃R
Γ ` A,∆ Γ′ ; B ` ∆′

Γ′,Γ ; A⊃ B ` ∆′,∆
⊃L

Γ ` A,∆ Γ′ ; B ` ∆′

Γ′,Γ ` A−B,∆′,∆
−R

Γ,A ` B,∆
Γ ; A−B ` ∆

−L

Γ ` A,∆ X /∈ FV(Γ ` ∆)

Γ ` ∀X .A,∆
∀R

Γ ; A{B/X} ` ∆

Γ ; ∀X .A ` ∆
∀L

Γ ` A{B/X} ,∆
Γ ` ∃X .A,∆

∃R
Γ,A ` ∆ X /∈ FV(Γ ` ∆)

Γ ; ∃X .A ` ∆
∃L

Fig. 15. The focused sub-logic of the LK sequent calculus corresponding to LKT.

lift out the non-value v in the command 〈in1(v)||α〉, whereas the generalized rewriting rule
lets us lift out v directly in the term in1(v) itself by abstracting over the co-variable α:

in1(v)→ςv µα.〈v||µ̃x.〈in1(x)||α〉〉

This extra generality is necessary when we want to use the rewriting theory to aggressively
perform lifting reductions in advance, as we soon will in the following subsection. Fur-
thermore, note that extending the semantics of the dual calculi with the ς rules preserves
determinism of the operational semantics and confluence of the rewriting theory, since

ZU064-05-FPR sequent-intro 22 March 2018 17:26

38 P. Downen and Z. M. Ariola

F ∈ FocusCxt ::= (�,v) || (V,�) || in1(�) || in2(�) || e ·� || B@�

L ∈ CoFocusCxt ::=� · e

Operational rules:

(ςv) 〈F [v]||E〉 7→ 〈v||µ̃x.〈F [x]||E〉〉 (v /∈ Valuev, x /∈ FV(F)∪FV(E))

(ςv) 〈V ||L[v]〉 7→ 〈v||µ̃x.〈V ||L[x]〉〉 (v /∈ Valuev, x /∈ FV(L)∪FV(V))

Rewriting rules:

(ςv) F [v]→ µβ .〈v||µ̃x.〈F [x]||β 〉〉 (v /∈ Valuev, x /∈ FV(F), β /∈ FV(F)∪FV(v))

(ςv) L[v]→ µ̃y.〈v||µ̃x.〈y||L[x]〉〉 (v /∈ Valuev, x /∈ FV(L), y /∈ FV(L)∪FV(v))

Fig. 16. The ς semantics for the call-by-value (v) half of the dual calculi.

F ∈ FocusCxt ::=� · v
L ∈ CoFocusCxt ::= out1[�] || out2[�] || [�,e] || [E,�] || v ·� || B@�

Operational rules:

(ςn) 〈F [e]||E〉 7→ 〈µα.〈F [α]||E〉||e〉 (e /∈ CoValuen, α /∈ FV(F)∪FV(E))

(ςn) 〈V ||L[e]〉 7→ 〈µα.〈V ||L[α]〉||e〉 (e /∈ CoValuen, α /∈ FV(L)∪FV(V))

Rewriting rules:

(ςn) F [e]→ µβ .〈µα.〈F [α]||β 〉||e〉 (e /∈ CoValuen, α /∈ FV(F), β /∈ FV(F)∪FV(v))

(ςn) L[e]→ µ̃y.〈µα.〈y||L[α]〉||e〉 (e /∈ CoValuen, α /∈ FV(L), y /∈ FV(L)∪FV(v))

Fig. 17. The ς semantics for the call-by-name (n) half of the dual calculi.

there are no critical pairs between the ς rules and µµ̃ηµ ηµ̃ β rules in either the call-by-
value or call-by-name calculus.

For the µvµ̃vβvςv call-by-value operational semantics, the net effect is that the final
commands are always a value yielded to a co-variable or a simple co-value (that is, a
co-variable or a left introduction co-term) applied to a variable as follows:

FinalCommandv ::= 〈V ||α〉 || 〈x||Es〉
V ∈ Valuev ::= x || (V,V ′) || in1(V) || in2(V) || not(e) || λx.v || e ·V || ΛX .v || B@V

Es ∈ SimpleCoValuev ::= α || out1[e] || out2[e] || [e,e′] || not[v] ||V · e || λ̃α.e || B@e || Λ̃X .e

Dually for the µnµ̃nβnςn call-by-name operational semantics, the final commands are al-
ways a simple value (a variable or an introduction term) yielded to a co-variable or a
co-value applied to a variable as follows:

FinalCommandn ::= 〈Vs||α〉 || 〈x||E〉
Vs ∈ SimpleValuen ::= x || (v,v′) || in1(v) || in2(v) || not(e) || λx.v || E · v || ΛX .v || B@v

E ∈ CoValuen ::= α || out1[E] || out2[E] || [E,E ′] || not[v] || v ·E || λ̃α.e || B@E || Λ̃X .e

If we only take well-typed commands into consideration, then we get a standard type safety
theorem which says that well-typed commands always reduce to a final command, and do
not get stuck on any interacting (and potentially mismatched) introduction forms:

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 39

Theorem 3 (Type safety). For any command c : (Γ ` ∆):

• if c 7→→ c′ by the µvµ̃vβvςv operational semantics, then c′ : (Γ`∆) and c′ is irreducible
(i.e., c′ 67→) if and only if c′ is a call-by-value final command, and

• if c 7→→ c′ by the µnµ̃nβnςn operational semantics, then c′ : (Γ`∆) and c′ is irreducible
(i.e., c′ 67→) if and only if c′ is a call-by-name final command.

This statement of big-step type safety follows from the small-step lemmas of progress
and preservation (Wright and Felleisen, 1994), which can easily be confirmed by induction
on typing derivations and inversion on the possible operational steps.

Lemma 1 (Progress and preservation). For any command c : (Γ ` ∆):

Progress: either c is a call-by-value (respectively, call-by-name) final command or
there is a command c′ such that c 7→ c′ by the call-by-value µvµ̃vβvςv (respectively,
call-by-name µnµ̃nβnςn) operational semantics, and

Preservation: if c 7→ c′ by either the call-by-value µvµ̃vβvςv or call-by-name µnµ̃nβnςn

operational semantics, then c′ : (Γ ` ∆).

Recall that λ µµ̃-calculus originally used a different β rule for functions, namely:

(β→) 〈λx.v||v′ · e〉 7→ 〈v′||µ̃x.〈v||e〉〉 x /∈ FV(e)

This β→ works the same for both call-by-name and call-by-value reduction; since the
argument v′ is bound to x with an input abstraction, the rules of the core µµ̃-calculus
take over to determine whether or not the argument is evaluated now (by a µv reduction,
for example) or later (by a µ̃n reduction). Furthermore, this form of β→ reduction applies
more often than the strategy-specific β→v and β→n , so we might ask if it avoids the need of
focusing for functions altogether. Unfortunately, the general β→ rule still suffers a similar,
if more subtle, fate as the strategy-specific β rules. For example, consider the command
〈 f ||µβ .〈1||α〉 · µ̃x.〈0||α〉〉 which corresponds to the expression letx = f (abort1) in0 in a
functional language containing the control operator abort that halts the current computa-
tion and yields its argument as the result. In call-by-value this expression should evaluate
to 1, and in call-by-name it should evaluate to 0, but the β→ rule does not help us since
there is a free variable f instead of a λ -abstraction. In this command, the ς rules are still
necessary to get the final result, and unfortunately combining the general β→ rule with
ς creates a mild form of non-determinism in the operational semantics since some β→

redexes are also ς redexes (though the associated rewriting theories are still confluent).
As it turns out, though, the combination of lifting and strategy-specific β→ reductions

are more powerful than the generalized β→ rule. In call-by-value, the combination of ςv,
µ̃v, and β→v exactly simulate the λ µµ̃-calculus β→ rule as follows:

〈λx.v||v′ · e〉→ςv 〈λx.v||µ̃y.〈v′||µ̃x.〈y||x · e〉〉〉→µ̃v 〈v′||µ̃x.〈λx.v||x · e〉〉→β→v 〈v
′||µ̃x.〈v||e〉〉

In call-by-name, observe that the combination of λ µµ̃’s β→ and µ̃n rules simulate the
call-by-name-specific β→n even when the call stack is not a co-value,

〈λx.v||v′ · e〉 →β→ 〈v′||µ̃x.〈v||e〉〉 →µ̃n 〈v
{

v′/x
}
||e〉

ZU064-05-FPR sequent-intro 22 March 2018 17:26

40 P. Downen and Z. M. Ariola

J〈v||e〉KQ , 〈JvKQ||JeKQ〉

JxKQ , x

Jµα.cKQ , µα.JcKQ

J()KQ , ()
q
(v,v′)

yQ , µα.〈JvKQ||µ̃x.〈
q
(x,v′)

yQ||α〉〉

J(V,v)KQ , µα.〈JvKQ||µ̃x.〈J(V,x)KQ||α〉〉
q
(V,V ′)

yQ , (JV KQ,
q
V ′

yQ
)

Jini(v)KQ , µα.〈JvKQ||µ̃x.〈Jini(x)KQ||α〉〉

Jini(V)KQ , ini(JV KQ)

Jnot(e)KQ , not(JeKQ)
q

λx.v′
yQ , λx.

q
v′

yQ

Je · vKQ , µα.〈JvKQ||µ̃x.〈JeKQ · x||α〉〉

Je ·V KQ , JeKQ · JV KQ

q
ΛX .v′

yQ , ΛX .
q

v′
yQ

JB@vKQ , µα.〈JvKQ||µ̃x.〈JB@xKQ||α〉〉

JB@V KQ , B@JV KQ

JαKQ , α

Jµ̃x.cKQ , µ̃x.JcKQ

J[]KQ , []

Jouti[e]KQ , outi[JeKQ]
q
[e,e′]

yQ , [JeKQ,
q

e′
yQ

]
q
not[v′]

yQ , not[
q

v′
yQ

]

Jv · eKQ , µ̃x.〈JvKQ||µ̃y.〈x||Jy · eKQ〉〉

JV · eKQ , JV KQ · JeKQ

r
λ̃α.e

zQ
, λ̃α.JeKQ

JB@eKQ , B@JeKQ

q
Λ̃X .e

yQ
, Λ̃X .JeKQ

v /∈ Valuev

Fig. 18. The Q-focusing translation to the LKQ sub-syntax.

but together the µ̃nηµ β→n ςn rules perform the same reduction as follows:

〈λx.v||v′ · e〉 →ςn 〈λx.v||µ̃y.〈µα.〈y||v′ ·α〉||e〉〉 →µ̃n 〈µα.〈λx.v||v′ ·α〉||e〉
→β→n 〈µα.〈v

{
v′/x

}
||α〉||e〉 →ηµ

〈v
{

v′/x
}
||e〉

So even though type safety (Theorem 3) cannot dispense with the ς rules by adopting
the λ µµ̃-calculus’ original β→ rules, we can still rely on the combination of strategy-
specific β→ς rules from Figs. 10 and 16 and Figs. 11 and 17 to get all the same results
with deterministic operational semantics.

Static versus dynamic focusing

Now that we have two different methods for addressing β -stuck commands, one question
still remains: what do the static and dynamic methods have to do with one another? As
it turns out, they are compatible and complementary solutions to the same problem—two
sides of the same coin—that apply the same essential idea at different times. First, one of
the major features of static focusing in proof theories and type systems is that the apparent
restriction on inference rules is no real restriction at all: every program (i.e., proof) in
the original system has a corresponding program with the same type (i.e., specification)
in the focused sub-system. We can make this claim more formally for LKQ and LKT by
observing that the syntactic transformations in Figs. 18 and 19 translate general dual calculi
expressions into the LKQ and LKT sub-syntaxes, respectively, with the same type (which
can be confirmed by induction on syntax and typing derivations). These translations are

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 41

J〈v||e〉KT , 〈JvKT ||JeKT 〉

JxKT , x

Jµα.cKT , µα.JcKT

J()KT , ()
q
(v,v′)

yT , (JvKT ,
q

v′
yT

)

Jini(v)KT , ini(JvKT)

Jnot(e)KT , not(JeKT)

Jλx.vKT , λx.JvKT

Je · vKT , µα.〈µβ .〈β · JvKT ||α〉||JeKT 〉

JE · vKT , JEKT · JvKT

JΛX .vKT , ΛX .JvKT

JB@vKT , B@JvKT

JαKT , α

Jµ̃x.cKT , µ̃x.JcKT

J[]KT , []

Jouti[e]KT , µ̃x.〈µα.〈x||Jouti[α]KT 〉||JeKT 〉

Jouti[E]KT , outi[JEKT]
q
[e,e′]

yT , µ̃x.〈µα.〈x||
q
[α,e′]

yT 〉||JeKT 〉

J[E,e]KT , µ̃x.〈µα.〈x||J[E,α]KT 〉||JeKT 〉
q
[E,E ′]

yT , [JEKT ,
q

E ′
yT

]

Jnot[v]KT , not[JvKT]

Jv · eKT , µ̃x.〈µα.〈x||Jv ·αKT 〉||JeKT 〉

Jv ·EKT , JvKT · JEKT

r
λ̃α.e′

zT
, λ̃α.

q
e′

yT

JB@eKT , µ̃x.〈µα.〈x||JB@αKT 〉||JeKT 〉

JB@EKT , B@JEKT

q
Λ̃X .e′

yT
, Λ̃X .

q
e′

yT

e /∈CoValuen

Fig. 19. The T -focusing translation to the LKT sub-syntax.

defined in such a way that an expression that happens to already lie in the LKQ sub-syntax
is not altered by Q-focusing translation, and likewise LKT expressions are not altered by
T -focusing translation.

With the focusing translations and the ς rewriting theory in hand, we can now ob-
serve that both the static and dynamic methods of focusing amount to the same thing.
In particular, notice that the LKQ sub-syntax is just the ςv-normal forms from the original
dual calculus and the Q-focusing translation performs call-by-value ςv-normalization, and
similarly the T -focusing translation is just call-by-name ςn-normalization into the LKT
sub-syntax of ςn-normal forms, which can be confirmed by induction on the syntax of
(co-)terms and commands.

Theorem 4 (Focusing). • In the call-by-value dual calculus, every LKQ command,
term, and co-term is a ςv-normal form, and c→→ςv JcKQ, v→→ςv JvKQ, and e→→ςv JeKQ.

• In the call-by-name dual calculus, every LKT command, term, and co-term is a ςn-
normal form, and c→→ςn JcKT , v→→ςn JvKT , and e→→ςn JeKT .

Therefore, the difference between the static and dynamic methods of focusing is not a
matter of what but when: do we prefer to leave ς redexes to happen during execution, or
would we rather reduce them all up front as a preprocessing pass?

ZU064-05-FPR sequent-intro 22 March 2018 17:26

42 P. Downen and Z. M. Ariola

Abstract machines

The operational semantics of the core and dual calculi is relatively straightforward to
specify and execute: reduction rules are checked against and applied directly to commands.
The situation in the term-based λ -calculus, however, is not so easy; the next step to take
may not be found directly at the top of the term itself, but may be buried somewhere deep
inside. Therefore, an operational semantics for the λ -calculus must also include a search
for the next step which is very different from the way that the λ -calculus is implemented
on a real machine. To help bridge the gap between the mathematics and the machine, we
can instead use an abstract machine for evaluating terms. As opposed to an operational
semantics which composes together reduction with a recursive search function as separate
steps, an abstract machine is an iterative interpreter that weaves both parts of evaluation
together. To achieve this iterative structure, an abstract machine for the λ -calculus does not
act on terms in isolation, but on a configuration including both terms and a representation
of their context for evaluation. By having direct access to the evaluation context, it can be
built up to search deeper into a term for the next step and then broken down to propagate
results back up.

Let’s now consider two different abstract machines for the λ -calculus, one implement-
ing call-by-name evaluation and one implementing call-by-value. Although abstract ma-
chines usually implement variable binding explicitly with an environment that is part of
the machine configuration to be closer to a real implementation, here we will remain more
abstract by using substitution-based machines. First, consider the following substitution-
based Krivine-style machine (Krivine, 2007) for call-by-name evaluation:

〈v v′||E〉 〈v||E[� v′]〉
〈λx.v||E[� v′]〉 〈v

{
v′/x

}
||E〉

The configuration for this machine contains two parts—a λ -calculus term v and an evalua-
tion context E—so that 〈v||E〉 can be understood as “the term v found inside the context E.”
This machine uses two forms of evaluation context—the application of the computation in
question to an argument, E[� v′], and the empty context,�—for finding the next β -redex to
perform. The first rule is searching for the next step of the operational semantics; given an
application v v′, the function v must be evaluated first, which is done by looking at v inside
the larger context E[� v′]. The second rule is performing a function call by β reduction; if
an abstraction λx.v is found inside an application to v′, then the result v{v′/x} is returned
to the surrounding evaluation context.

Second, consider the substitution-based CEK-style machine (Felleisen and Friedman,
1986) for call-by-value evaluation:

〈v v′||E〉 〈v||E[� v′]〉
〈V ||E[� v]〉 〈v||E[V �]〉

〈V ||E[(λx.v) �]〉 〈v{V/x}||E〉

Compared to previous machine, this machine uses one additional form of evaluation context—
the application of a function value to the computation in question E[V �]—for finding the
next β -redex to perform. The first rule is the same as before. The second rule is new, and
reflects the fact that in call-by-value arguments must be evaluated before function calls can

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 43

be performed; when the function of a call is found to be a value but its argument is not,
then our attention must shift to the argument to search for the next step. The third rule is a
rephrasing of the β reduction rule from before; if a value V is found inside of an application
of the abstraction λx.v, then the result v{V/x} is returned to the surrounding evaluation
context.

Since the dual calculi effectively represents evaluation contexts with an explicit syntactic
object e, it gives us an abstract language for abstract machines (Ariola et al., 2009). In
particular, we may view the syntax of the dual calculi as a higher-level representation of
the above substitution-based abstract machines. The λ -calculus term can be represented by
a dual calculus term v, the evaluation context can be represented by a co-term e, and the
configuration of the machine can be represented by a command c. Interestingly, though,
the treatment of focusing in abstract machines tends to be asymmetrical depending on the
evaluation strategy: call-by-value abstract machines (like the CEK machine above) tend to
rely on dynamic focusing that happens during execution, whereas call-by-name abstract
machines (like the Krivine machine above) tend to maintain static focusing.

We can relate the states of the call-by-name Krivine machine to the call-by-name dual
calculus by translating the evaluation contexts to co-terms. The empty context can be repre-
sented by just an arbitrary co-variable α , and the application to an argument is represented
directly as a call stack co-term: E[� v′] , v′ ·E. With this interpretation, the first rule of
the machine states the relationship between function application in the λ -calculus and call
stacks in the dual calculus, and the second rule is exactly the β→n operational step:

〈v v′||E〉= 〈µα.〈v||v′ ·α〉||E〉 7→µn 〈v||v′ ·E〉= 〈v||E[� v′]〉
〈λx.v||E[� v′]〉= 〈λx.v||v′ ·E〉 7→β→n 〈v

{
v′/x

}
||E〉

Note that if we always start with a co-value in the machine state then the first rule only ever
builds co-values in the LKT sub-syntax. For example, by evaluating a term v in the “empty
context” as 〈v||α〉, the co-term in the machine will always be a chain of call stacks with
some number of arguments like v1 · v2 · v3 · v4 ·α . Therefore, this Krivine-style machine
operates within the statically focused LKT sub-syntax.

Now consider how to apply this relationship to the call-by-value CEK machine and the
call-by-value dual calculus. We can extend the previous translation of evaluation contexts
to co-terms so that an applied function value is represented indirectly with an input abstrac-
tion: E[V �] , µ̃x.〈V ||x ·E〉. With this interpretation, the first rule of the machine relates
function application and call stacks as before, the second rule of the machine is exactly the
ςv operational step, and the last rule is a combined µ̃vβ→v step:

〈v v′||E〉= 〈µα.〈v||v′ ·α〉||E〉 7→µv 〈v||v′ ·E〉= 〈v||E[� v′]〉
〈V ||E[� v]〉= 〈V ||v ·E〉 7→ςv 〈v||µ̃x.〈V ||x ·E〉〉= 〈v||E[V �]〉

〈V ||E[(λx.v) �]〉= 〈V ||µ̃y.〈λx.v||y ·E〉〉 7→µ̃v 〈λx.v||V ·E〉 7→β→v 〈v{V/x}||E〉

Notice that this machine does not necessarily operate within the focused LKQ sub-syntax:
the first rule might push a non-value computation onto a call stack. In this case, the ςv rule
is needed to refocus the machine during execution. Of course, we could avoid the need for
ςv reduction at run-time by changing our interpretation of application to pre-ςv-normalize

ZU064-05-FPR sequent-intro 22 March 2018 17:26

44 P. Downen and Z. M. Ariola

the call stack, as in E[� v] , µ̃x.〈v||µ̃y.〈x||y ·E〉〉. However, this is just a matter of taste
since the two timings of focusing amount to the same thing (Theorem 4).

5.2 Call-by-value is dual to call-by-name

We now turn to the duality for which the dual calculi are named. We saw how the sym-
metries of the sequent calculus present a logical duality that captures De Morgan duals in
Section 3.2. This duality is carried over by the Curry-Howard isomorphism and presents
itself as two dualities in programming languages:

(1) a duality between the static semantics (types) of languages, and
(2) a duality between the dynamic semantics (reductions) of languages.

These dualities of programming languages were first observed by Filinski (1989) from
the correspondence with duality in category theory, which was later expanded upon by
Selinger (2001, 2003) in the style of natural deduction. Curien and Herbelin (2000) and
Wadler (2003, 2005) brought this duality to the language of sequent calculus, and show
how it is better reflected in the language as a duality of syntax corresponding to the inherent
symmetries in the logic.

The static aspect of duality between types comes directly from the logical duality of the
sequent calculus. Since duality spins a sequent around its turnstile, so that assumptions
are exchanged with conclusions, we also have a corresponding swap in the programming
language. The dual of a term v of type A is a co-term of the dual type and vice versa, so
that the term and co-term components of a command are swapped. Likewise, the duality on
types lines up directly with the De Morgan duality on logical propositions. For example,
since the types for pairs (×) and sums (+) correspond to conjunction (∧) and disjunction
(∨), we have the same relationship with the duality operation:

(A×B)⊥ , (A⊥)+(B⊥) (A+B)⊥ , (A⊥)× (B⊥)

Also following the De Morgan duality, negation (¬) is self-dual.
With the dual counterpart to functions in place, the full duality relationship of types

and programs of the dual calculi is defined in Fig. 20, where we assume an underlying
bijection, denoted by x and α , between variables and co-variables.This relationship is not
just a syntactic word game, but it gives us a duality between the typing derivations of terms
and co-terms (Curien and Herbelin, 2000; Wadler, 2003):

Theorem 5 (Static duality).

• The command c : (Γ ` ∆) is well-typed if and only if the command c⊥ : (∆⊥ ` Γ⊥) is.
• The term Γ ` v : A | ∆ is well-typed if and only if the co-term ∆⊥ | v⊥ : A⊥ ` Γ⊥ is.
• The co-term Γ | e : A ` ∆ is well-typed if and only if the term ∆⊥ ` e⊥ : A⊥ | Γ⊥ is.

Furthermore, if a command, term, or co-term lies in the LKQ sub-syntax, its dual lies in
the LKT sub-syntax and vice versa.

Also notice that the duality operation is involutive on the nose: the dual of the dual is
exactly the same as the original.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 45

Duality of sequents:

(c : (Γ ` ∆))⊥ , c⊥ : (∆⊥ ` Γ
⊥)

(Γ ` v : A | ∆)⊥ , ∆
⊥ | v⊥ : A⊥ ` Γ

⊥ (Γ | e : A ` ∆)⊥ , ∆
⊥ ` e⊥ : A⊥ | Γ⊥

(xn : An, . . . ,x1 : A1)
⊥ , x⊥1 : A⊥1 , . . . ,x

⊥
n : A⊥n (α1 : A1, . . . ,αn : An)

⊥ , α
⊥
n : A⊥n , . . . ,α

⊥
1 : A⊥1

Duality of types:

(X)⊥ , X

>⊥ ,⊥ ⊥⊥ ,>

(A×B)⊥ , (A⊥)+(B⊥) (A+B)⊥ , (A⊥)× (B⊥)

(A→ B)⊥ , (B⊥)− (A⊥) (B−A)⊥ , (A⊥)→ (B⊥)

(∀X .A)⊥ , ∃X .(A⊥) (∃X .A)⊥ , ∀X .(A⊥)

(¬A)⊥ , ¬(A⊥)

Duality of programs:

〈v||e〉⊥ , 〈e⊥||v⊥〉

(x)⊥ , x [α]⊥ , α

(µα.c)⊥ , µ̃α.c⊥ [µ̃x.c]⊥ , µx.c⊥

()⊥ , [] []⊥ , ()

(v1,v2)
⊥ , [v⊥1 ,v

⊥
2] [e1,e2]

⊥ , (e⊥1 ,e
⊥
2)

ini(v)⊥ , outi[v⊥] outi[e]⊥ , ini(e⊥)

not(e)⊥ , not[e⊥] not[v]⊥ , not(v⊥)

(λx.v)⊥ , λ̃x.[v⊥] [λ̃α.e]⊥ , λα.(v⊥)

(e · v)⊥ , e⊥ · v⊥ [v · e]⊥ , v⊥ · e⊥

(ΛX .v)⊥ , Λ̃X .[v⊥] [Λ̃X .e]⊥ , ΛX .(e⊥)

(B@v)⊥ , B@[v⊥] [B@e]⊥ , B@(e⊥)

Fig. 20. The duality relation between the dual calculi.

Theorem 6 (Involution). For all commands c, terms v, and co-terms e of the dual calculi,
c⊥⊥ , c, v⊥⊥ , v, and e⊥⊥ , e.

The dynamic aspect of duality takes form as a relationship between the two reduction
systems for evaluating programs: call-by-value reduction is dual to call-by-name reduction.
That is, if we have a command c that behaves a certain way according to the call-by-value
calculus, then the dual command c⊥ behaves in a correspondingly dual way according to
the call-by-name calculus, and vice versa. The two operational and rewriting semantics
mirror each other exactly, rule for rule.

Theorem 7 (Dynamic duality). c 7→µv µ̃vβvςv c′ if and only if c⊥ 7→µn µ̃nβnςn c′⊥, and dually
c 7→µn µ̃nβnςn c′ if and only if c⊥ 7→µv µ̃vβvςv c′⊥. And analogously for the rewriting rules.

This duality relationship inherent to computational interpretations of the sequent calcu-
lus is a useful vehicle for exploring programming language design and implementation.
Because duality is so syntactic in this language, once the general pattern is set up no

ZU064-05-FPR sequent-intro 22 March 2018 17:26

46 P. Downen and Z. M. Ariola

cleverness is needed to exploit it: terms are mirrored by co-terms, and so we can always
ask what happens when they switch places. For example, even though we have presented
LK and the dual calculi with subtraction from the start, it was actually developed after the
fact as a means to complete duality (Curien and Herbelin, 2000). Once a sequent-based
language with functions is developed, there is a glaring gap of symmetry begging one
to ask “what happens when λ -abstractions and call-stacks switch places?” Similarly, this
syntactic form of duality was used to ask (Wadler, 2005), and subsequently answer (Ariola
et al., 2011), the question “if call-by-value is dual to call-by-name, then what is dual to call-
by-need (Ariola et al., 1995)?” By figuring out what is a call-by-need sequent calculus, the
dual to call-by-need comes for free.

6 Conclusion

We have now seen how the sequent calculus gives us a programming language for classical
logic by using the Curry-Howard isomorphism to derive another view of computation.
This view lets us look at functional programming from a lower level using a language
tailored for representing abstract machines. The important role of contexts is always in
the background of the λ -calculus and functional languages—for example, when studying
the semantics of the λ -calculus, contexts explicitly arise in abstract machines, operational
semantics, and continuation-passing style—and the sequent calculus gives a first-class
body to the essence of contexts. The language of the sequent calculus also lets us see
the computational meaning of dualities in logic as it’s expressed directly in the syntax of
programs, showing us

• the duality between call-by-value and call-by-name evaluation,
• the duality between manipulating values and manipulating contexts, and
• the duality between types in programming languages, like products and sums.

And in the context of functional programming, these kinds of dualities can be used to
tackle difficult issues like deriving well-founded principles of co-induction from the more
intuitive principles of induction (Downen et al., 2015). We also saw how the concept of
focusing from proof search can be used to maintain type safety in the sequent calculus,
so that we avoid getting prematurely stuck while keeping computation at the top of a
command. The two approaches to focusing in the syntax or in the reductions amount
to the same end, and just differ in their timing: static focusing (i.e., translating to the
LKT and LKQ sub-syntaxes (Curien and Herbelin, 2000)) occurs during “compile-time”
and dynamic focusing (i.e., performing ς -reductions (Wadler, 2003)) occurs during “run-
time.” For an alternative view and introduction to the sequent calculus from the perspective
of proof search rather than computation see Pfenning (2010b), and for an application of
focusing for deciding equivalence of typed λ -calculus terms see Scherer (2016).

In our experience, we have found that the sequent calculus provides an enlightening and
practical alternative perspective to functional programming that complements the founda-
tions based on the λ -calculus. For example, variations on the λ -calculus are popularly used
as an intermediate language in real-world compilers of functional programming languages,
so that the compiler can reason about and optimize programs. Given the machine-like
nature of the sequent calculus, perhaps that would make for a good intermediate language,

ZU064-05-FPR sequent-intro 22 March 2018 17:26

A Tutorial on Computational Classical Logic and the Sequent Calculus 47

too? To answer this question, we designed such an intermediate language and implemented
it as a plugin for the Glasgow Haskell Compiler (GHC) (Downen et al., 2016), and obtained
a representation that was a compromise combining the advantages of the λ -calculus in both
direct style and continuation-passing style (CPS). Of particular note, we learned how join
points—which are a useful feature in both CPS (Kennedy, 2007) and SSA (Cytron et al.,
1991) intermediate languages—are still important and can be incorporated in a direct style
language. From this experiment, we used the connection between natural deduction and
the sequent calculus (Gentzen, 1935b) to develop a minimal extension to GHC’s existing
intermediate language that incorporates the join points from our sequent-based language.
As a result, we found that real functional programs benefited from the extension of GHC
with join points (see https://ghc.haskell.org/trac/ghc/wiki/SequentCore for
more details of GHC’s use of join points in practice), confirming that the sequent calculus
can serve as a catalyst in the practice and implementation of functional languages.

In this paper, we only covered the basics of using the sequent calculus as the core for a
programming language. One topic that we did not cover, but is of increasing importance
for the foundations of functional programming, is the concept of polarity. In terms of
computation, polarity takes into consideration not just the operational meaning of each type
(i.e., β -conversion in the λ -calculus) but also the observational meaning of types (i.e., η-
conversion in the λ -calculus). Instead of deciding on a single strategy for the language once
and for all, the programs of each type are evaluated according to their “optimal” strategy
which maximises their observational properties. For example, η-conversion for functions
types happens on terms in the sequent calculus, so expressions of function type should
be evaluated with the call-by-name strategy to let η-conversion be as strong as possible.
In contrast, η-conversion for sums types happens on co-terms in the sequent calculus,
so expressions of sum types should be evaluated with the call-by-value strategy for the
same reason. This difference in η comes from properties of the inference rules for types
and lets us divide types into two camps: the positive types like sums that warrant a call-
by-value interpretation and the negative types like functions that warrant a call-by-name
interpretation. Lecture materials by Zeilberger (2013), Pfenning (2010a), and Graham-
Lengrand (2016) give an introduction to the idea of polarity in logic and languages.

The polarized approach shows how we can design languages that incorporate both eager
and lazy evaluation to take advantage of the strengths of both evaluation strategies without
bias as to which one must be the “default” throughout programs. But even for functional
programming languages which (largely) use a single default strategy, polarity still gives us
new insights. For example, polarity gives a logical reconstruction of pattern-matching as
found in functional programming languages (Zeilberger, 2009) and shows us how to better
reason about the equivalence of functional programs using sum types (Munch-Maccagnoni
and Scherer, 2015). Polarity first arose hand-in-hand with focusing in the study of proof
search (Andreoli, 1992; Laurent, 2002), and interestingly it too says something important
about computation. Whereas focusing tells us how to focus attention on sub-computations,
polarity tells us how to adapt the dynamic meaning of types (i.e., how programs are evalu-
ated) to match the static meaning of types (i.e., how programs are type-checked). Since the
logic of the sequent calculus is the lingua franca of proof search, the sequent calculus serves
as an intermediate common language which lets us discover the surprising connections
between proof search and programming languages.

https://ghc.haskell.org/trac/ghc/wiki/SequentCore

ZU064-05-FPR sequent-intro 22 March 2018 17:26

48 P. Downen and Z. M. Ariola

Acknowledgements

We would like to thank Luke Maurer, Philip Johnson-Freyd, Matthias Felleisen, and the
anonymous reviewers for their thorough and helpful feedback for improving this paper.
This work has been supported by the National Science Foundation under Grant No. CCF-
1423617 and Grant No. CCF-1719158.

Bibliography

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New York,
NY, USA, 1992. ISBN 0-521-41695-7.

Zena M. Ariola and Hugo Herbelin. Minimal classical logic and control operators. In
Automata, Languages and Programming: 30th International Colloquium, ICALP 2003,
pages 871–885, Berlin, Heidelberg, June 2003. Springer Berlin Heidelberg. ISBN 978-
3-540-45061-0. doi:10.1007/3-540-45061-0 68.

Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. A
call-by-need lambda calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, pages 233–246, New
York, NY, USA, 1995. ACM. ISBN 0-89791-692-1. doi:10.1145/199448.199507.

Zena M. Ariola, Aaron Bohannon, and Amr Sabry. Sequent calculi and abstract machines.
ACM Transactions on Programming Languages and Systems, 31(4):13:1–13:48, May
2009. ISSN 0164-0925. doi:10.1145/1516507.1516508.

Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. Classical call-by-need and duality.
In Typed Lambda Calculi and Applications: 10th International Conference, TLCA’11,
pages 27–44, Berlin, Heidelberg, June 2011. Springer Berlin Heidelberg. ISBN 978-3-
642-21690-9. doi:10.1007/978-3-642-21691-6 6.

Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics, 33
(2):346–366, 1932. doi:10.2307/1968337.

Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP ’00, pages 233–243, New York, NY, USA, 2000. ACM. ISBN 1-58113-202-6.
doi:10.1145/351240.351262.

Pierre-Louis Curien and Guillaume Munch-Maccagnoni. The duality of computation
under focus. In Theoretical Computer Science: 6th IFIP TC 1/WG 2.2 International
Conference, TCS 2010, Held as Part of WCC 2010, TCS 2010, pages 165–181, Berlin,
Heidelberg, September 2010. Springer Berlin Heidelberg. ISBN 978-3-642-15240-5.
doi:10.1007/978-3-642-15240-5 13.

Haskell B. Curry, Robert Feys, and William Craig. Combinatory Logic, volume 1. North-
Holland Publishing Company, 1958.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13(4):451–490, October
1991. ISSN 0164-0925. doi:10.1145/115372.115320.

Nicolaas de Bruijn. AUTOMATH, a language for mathematics. Technical Report 66-
WSK-05, Technological University Eindhoven, November 1968.

http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1007/3-540-45061-0_68
http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.1145/1516507.1516508
http://dx.doi.org/10.1007/978-3-642-21691-6_6
http://dx.doi.org/10.2307/1968337
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1007/978-3-642-15240-5_13
http://dx.doi.org/10.1145/115372.115320

ZU064-05-FPR sequent-intro 22 March 2018 17:26

* 49

Paul Downen and Zena M. Ariola. The duality of construction. In Programming Languages
and Systems: 23rd European Symposium on Programming, ESOP 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
volume 8410 of Lecture Notes in Computer Science, pages 249–269. Springer Berlin
Heidelberg, April 2014. ISBN 978-3-642-54832-1. doi:10.1007/978-3-642-54833-8 14.

Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. Structures for structural
recursion. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’15, pages 127–139, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3669-7. doi:10.1145/2784731.2784762.

Paul Downen, Luke Maurer, Zena M. Ariola, and Simon Peyton Jones. Sequent
calculus as a compiler intermediate language. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, pages
74–88, New York, NY, USA, September 2016. ACM. ISBN 978-1-4503-4219-3.
doi:10.1145/2951913.2951931.

Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine, and
the λ -calculus. In Proceedings of the IFIP TC 2/WG2.2 Working Conference on Formal
Descriptions of Programming Concepts Part III, pages 193–219, 1986.

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235–271, 1992.
ISSN 0304-3975. doi:10.1016/0304-3975(92)90014-7.

Andrzej Filinski. Declarative continuations and categorical duality. Master’s thesis,
Computer Science Department, University of Copenhagen, 1989.

Gerhard Gentzen. Untersuchungen über das logische schließen. I. Mathematische
Zeitschrift, 39(1):176–210, 1935a. ISSN 0025-5874. doi:10.1007/BF01201353.

Gerhard Gentzen. Untersuchungen über das logische schließen. II. Mathematische
Zeitschrift, 39(1):405–431, 1935b. ISSN 0025-5874. doi:10.1007/BF01201363.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. ISSN
0304-3975. doi:10.1016/0304-3975(87)90045-4.

Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical Structures in
Computer Science, 1(3):255–296, 1991. doi:10.1017/S0960129500001328.

Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59(3):201–
217, 1993. ISSN 0168-0072. doi:10.1016/0168-0072(93)90093-S.

Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science, 11(3):301–506, June 2001. ISSN 0960-
1295. doi:10.1017/S096012950100336X.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University
Press, New York, NY, USA, 1989. ISBN 0-521-37181-3.

Stéphane Graham-Lengrand. The Curry-Howard view of classical logic: A short
introduction. Lecture Notes for the MPRI course on Curry-Howard correspondence
for Classical Logic, March 2016. URL http://www.lix.polytechnique.fr/

~lengrand/Work/Teaching/MPRI/Notes.pdf. Unpublished Manuscript.
Timothy G. Griffin. A formulae-as-types notion of control. In Proceedings of the

17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’90, pages 47–58, New York, NY, USA, 1990. ACM. ISBN 0-89791-343-4.
doi:10.1145/96709.96714.

http://dx.doi.org/10.1007/978-3-642-54833-8_14
http://dx.doi.org/10.1145/2784731.2784762
http://dx.doi.org/10.1145/2951913.2951931
http://dx.doi.org/10.1016/0304-3975(92)90014-7
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1007/BF01201363
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1017/S0960129500001328
http://dx.doi.org/10.1016/0168-0072(93)90093-S
http://dx.doi.org/10.1017/S096012950100336X
http://www.lix.polytechnique.fr/~lengrand/Work/Teaching/MPRI/Notes.pdf
http://www.lix.polytechnique.fr/~lengrand/Work/Teaching/MPRI/Notes.pdf
http://dx.doi.org/10.1145/96709.96714

ZU064-05-FPR sequent-intro 22 March 2018 17:26

50 P. Downen and Z. M. Ariola

Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents comme
calcul de λ -termes et comme calcul de stratégies gagnantes. PhD thesis, Université
Paris 7, January 1995.

Hugo Herbelin. C’est maintenant qu’on calcule : Au coeur de la dualité. Habilitation
thesis, Université Paris 11, 2005.

William A. Howard. The formulae-as-types notion of constructions. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490.
Academic Press, 1980. ISBN 0123490502. Unpublished manuscript of 1969.

Richard Kelsey, William Clinger, and Jonathan Rees et al. Revised5 report on the
algorithmic language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105,
August 1998. ISSN 1573-0557. doi:10.1023/A:1010051815785.

Andrew Kennedy. Compiling with continuations, continued. In Proceedings of the
12th ACM SIGPLAN International Conference on Functional Programming, ICFP ’07,
pages 177–190, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-815-2.
doi:10.1145/1291151.1291179.

Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order
and Symbolic Computation, 20(3):199–207, September 2007. ISSN 1388-3690.
doi:10.1007/s10990-007-9018-9.

Olivier Laurent. Étude de la polarisation en logique. PhD thesis, Université de la
Méditerranée - Aix-Marseille II, March 2002.

Guillaume Munch-Maccagnoni. Focalisation and classical realisability. In Computer
Science Logic: 23rd international Workshop, CSL 2009, 18th Annual Conference of
the EACSL, CSL 2009, pages 409–423, Berlin, Heidelberg, September 2009. Springer
Berlin Heidelberg. ISBN 978-3-642-04027-6. doi:10.1007/978-3-642-04027-6 30.

Guillaume Munch-Maccagnoni and Gabriel Scherer. Polarised intermediate representation
of lambda calculus with sums. In 2015 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, pages 127–140, July 2015. doi:10.1109/LICS.2015.22.

Atsushi Ohori. The logical abstract machine: A Curry-Howard isomorphism for machine
code. In Functional and Logic Programming: 4th Fuji International Symposium,
FLOPS ’99, pages 300–318, Berlin, Heidelberg, November 1999. Springer Berlin
Heidelberg. ISBN 978-3-540-47950-5. doi:10.1007/10705424 20.

Atsushi Ohori. Register allocation by proof transformation. In Programming Languages
and Systems: 12th European Symposium on Programming, ESOP 2003 Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2003, ESOP 2003, pages 399–413, Berlin, Heidelberg, April 2003. Springer Berlin
Heidelberg. ISBN 978-3-540-36575-4. doi:10.1007/3-540-36575-3 27.

Michel Parigot. λ µ-calculus: An algorithmic interpretation of classical natural deduction.
In Logic Programming and Automated Reasoning: International Conference, LPAR ’92,
pages 190–201, Berlin, Heidelberg, July 1992. Springer Berlin Heidelberg. ISBN 978-
3-540-47279-7. doi:10.1007/BFb0013061.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules: Rewriting as
a practical optimisation technique in GHC. In Haskell Workshop 2001. ACM SIGPLAN,
September 2001.

Frank Pfenning. Lecture notes on focusing. Lecture notes for the Oregon
Programming Languages Summer School 2010 course on Proof Theory Foundations,

http://dx.doi.org/10.1023/A:1010051815785
http://dx.doi.org/10.1145/1291151.1291179
http://dx.doi.org/10.1007/s10990-007-9018-9
http://dx.doi.org/10.1007/978-3-642-04027-6_30
http://dx.doi.org/10.1109/LICS.2015.22
http://dx.doi.org/10.1007/10705424_20
http://dx.doi.org/10.1007/3-540-36575-3_27
http://dx.doi.org/10.1007/BFb0013061

ZU064-05-FPR sequent-intro 22 March 2018 17:26

* 51

Lecture 4, June 2010a. URL http://www.cs.cmu.edu/~fp/courses/oregon-m10/

04-focusing.pdf. Unpublished Manuscript.
Frank Pfenning. Lecture notes on sequent calculus. Lecture Notes for the

Carnegie Mellon University course 15-816 on Modal Logic, Lecture 8, February
2010b. URL http://www.cs.cmu.edu/~fp/courses/15816-s10/lectures/

08-seqcalc.pdf. Unpublished Manuscript.
Emmanuel Polonovski. Explicit Substitutions, Logic and Normalization. PhD thesis,

Université Paris-Diderot - Paris VII, June 2004.
John C. Reynolds. Types, abstraction and parametric polymorphism. In Proceedings of

the IFIP 9th World Computer Congress, Information Processing 83, pages 513–523,
Amsterdam, September 1983. Elsevier Science Publishers B. V. (North-Holland).

John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation, 6
(3-4):233–248, November 1993. ISSN 0892-4635. doi:10.1007/BF01019459. URL
http://dx.doi.org/10.1007/BF01019459.

John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, December 1998. ISSN 1388-
3690. doi:10.1023/A:1010027404223.

Gabriel Scherer. Which types have a unique inhabitant? Focusing on pure program
equivalence. PhD thesis, Université Paris-Diderot, March 2016.

Peter Selinger. Control categories and duality: On the categorical semantics of the lambda-
mu calculus. Mathematical Structures in Computer Science, 11(2):207–260, April 2001.
ISSN 0960-1295. doi:10.1017/S096012950000311X.

Peter Selinger. Some remarks on control categories, 2003. URL http://mathstat.dal.

ca/~selinger/papers/controlremarks.pdf. Unpublished Manuscript.
Satnam Singh, Simon Peyton Jones, Ulf Norell, François Pottier, Erik Meijer,

and Conor McBride. Sexy types—are we done yet? Software Summit,
April 2011. URL https://www.microsoft.com/en-us/research/video/

sexy-types-are-we-done-yet/.
Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the Eighth ACM

SIGPLAN International Conference on Functional Programming, pages 189–201, New
York, NY, USA, 2003. ACM. ISBN 1-58113-756-7. doi:10.1145/944705.944723.

Philip Wadler. Call-by-value is dual to call-by-name, reloaded. In Term
Rewriting and Applications: 16th International Conference, RTA 2005, pages 185–
203, Berlin, Heidelberg, April 2005. Springer Berlin Heidelberg. ISBN 978-3-
540-32033-3. doi:10.1007/978-3-540-32033-3 15. URL dx.doi.org/10.1007/

978-3-540-32033-3_15.
Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38–94, November 1994. ISSN 0890-5401.
doi:10.1006/inco.1994.1093.

Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD
thesis, Carnegie Mellon University, 2009.

Noam Zeilberger. Polarity in proof theory and programming. Lecture Notes for the
Summer School on Linear Logic and Geometry of Interaction in Torino, Italy, August
2013. URL http://noamz.org/talks/logpolpro.pdf. Unpublished Manuscript.

http://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf
http://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf
http://www.cs.cmu.edu/~fp/courses/15816-s10/lectures/08-seqcalc.pdf
http://www.cs.cmu.edu/~fp/courses/15816-s10/lectures/08-seqcalc.pdf
http://dx.doi.org/10.1007/BF01019459
http://dx.doi.org/10.1007/BF01019459
http://dx.doi.org/10.1023/A:1010027404223
http://dx.doi.org/10.1017/S096012950000311X
http://mathstat.dal.ca/~selinger/papers/controlremarks.pdf
http://mathstat.dal.ca/~selinger/papers/controlremarks.pdf
https://www.microsoft.com/en-us/research/video/sexy-types-are-we-done-yet/
https://www.microsoft.com/en-us/research/video/sexy-types-are-we-done-yet/
http://dx.doi.org/10.1145/944705.944723
http://dx.doi.org/10.1007/978-3-540-32033-3_15
dx.doi.org/10.1007/978-3-540-32033-3_15
dx.doi.org/10.1007/978-3-540-32033-3_15
http://dx.doi.org/10.1006/inco.1994.1093
http://noamz.org/talks/logpolpro.pdf

ZU064-05-FPR sequent-intro 22 March 2018 17:26

52 P. Downen and Z. M. Ariola

A Classical versus intuitionistic logic and computation

The fact that the LK sequent calculus can prove the law of excluded middle (A∨ (¬A)),
assured by duality of the law of contradiction (¬(A∧(¬A))) in Section 3.2, means that it is
a proof system for classical logic. In contrast, intuitionistic logic is missing duality since
it accepts non-contradiction in general, but rejects the universal truth of laws like excluded
middle or double negation elimination ((¬(¬A))⊃ A), only allowing for specialized proofs
depending on the particular A in question. Intuitionistic logic also only validates three of the
four De Morgan laws for commuting negation with conjunction and disjunction, rejecting
¬(A∧B)⊃ (¬A)∨ (¬B) in particular, showing another break of duality.

Gentzen (1935a) introduced another sequent calculus called LJ for formalizing intu-
itionistic logic instead of classical logic. Notice that the LK proof of excluded middle
made critical use of multiple consequences and contraction on the right of the sequent in
order to apply both ∨R2 and ∨R1 to the same original consequence. Without the ability
to manipulate sequents with multiple consequences, the general proof that A∨ (¬A) is
true for any A would not be possible. Such a restriction would break the symmetry of
LK—as multiple hypotheses cannot be mirrored by multiple consequences—and destroy
the duality that let us convert the general proof of non-contradiction into a proof of the
excluded middle. LJ is thus defined as the restriction of LK where sequents contain exactly
one consequence at all times. Note that with this restriction, LJ does not allow for the right
structural rules WR, CR, and XR since they necessarily involve sequents with more than one
consequence. For the same reason, LJ does not include the logical connectives for negation
(¬) and subtraction (−), since the introduction rules for these connectives do not fit within
the single-consequence discipline. In their place, they can be encoded in terms of the other
connectives in LJ as ¬A = A→⊥ and A−B = A∧ (¬B).

The LJ sequent calculus has a close relationship with Gentzen’s (1935a) system NJ of
natural deduction, which is naturally a proof system for intuitionistic logic already. More
specifically, NJ proofs can be converted to equivalent LJ proofs, and vice versa. The NJ
system of natural deduction is shown in Fig. A 1, which corresponds to the polymorphic
λ -calculus with products, sums, and existential types shown in Fig. A 2. We call a leaf of
an NJ proof tree that is not closed off by an axiom (an inference rule with no premise) a
free assumption of that proof tree and call an NJ proof tree without any free assumptions a
closed proof. Similarly, a variable found in a λ -calculus term that is not under a matching
binder of that variable (introduced by a λ or case term) is called a free variable, and a
term without any free variables is called a closed term. With this terminology in mind,
the correspondence between the two is that there is an NJ proof derivation of B with free
assumptions A1, . . . ,An if and only if there is a typing derivation for some term M : B with
free variables x1 : A1, . . . ,xn : An. By taking advantage of the correspondence between NJ
and the polymorphic λ -calculus and between the LJ restriction of LK and the analogously
restricted dual calculi with a single output, we can demonstrate the correspondence be-
tween NJ and LJ as a translation on programs. Consider the mutual translations between
the polymorphic λ -calculus and single-output dual calculi shown in Fig. A 3. The fact that
these two translations preserve types means that the logics of LJ and NJ prove the same
propositions true.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

* 53

A,B,C ∈ Proposition ::= X || > || ⊥ || A∧B || A∨B || A⊃ B || ∀X .A || ∃X .A

> >I
no >E rule no ⊥I rule

⊥
C
⊥E

A B
A∧B

∧I A∧B
A
∧E1

A∧B
B
∧E2

A
A∨B

∨I1
B

A∨B
∨I2

A∨B

A
x

....
C

B
y

....
C

C
∨Ix,y

A
x

....
B

A⊃ B
⊃Ix

A⊃ B A
B

⊃E

.... (X /∈ FV(∗))
A
∀X .A

∀IX
∀X .A

A{B/X}
∀E

A{B/X}
∃X .A

∃I
∃X .A

A
x

.... (X /∈ FV(∗))
C (X /∈ FV(C))

C
∃EX ,x

Fig. A 1. Gentzen’s NJ system of natural deduction.

Theorem 8 (Well-typed translation). (a) If M : A is a well-typed λ -calculus term with
free variables of type Γ, then Γ ` JMKLJ : A | is a well-typed pure dual calculi term.

(b) If Γ ` v : A | is a well-typed pure dual calculi term then JvKNJ : A is a well-typed
λ -calculus term with free variables of type Γ.

(c) If c : (Γ ` α : A) is a well-typed pure dual calculi command then JcKNJ : A is a
well-typed λ -calculus term with free variables of type Γ.

(d) If Γ | e : B ` α : A is a well-typed pure dual calculi co-term, then for all well-typed
λ -calculus terms M : B with free variables of type Γ, it follows that JeKNJ [M] : A is
a well-typed λ -calculus term with free variables of type Γ.

Theorem 9 (LJ-NJ provability). A proof of A1, . . . ,An ` B is derivable in LJ if and only if
a proof of B with free assumptions A1, . . . ,An is derivable in NJ.

Furthermore, because of the consistency of LJ (coming from the consistency of LK by
cut elimination in Corollary 1), the correspondence between LJ and NJ means NJ is also
consistent. Because NJ does not use sequents, we cannot state its consistency in terms of
the contradictory sequent • ` •. Instead, we can say that NJ is consistency because the
provability of propositions is not a trivial predicate: there exist some propositions with
proofs and some propositions without proofs. For example, > is axiomatically true in NJ,

ZU064-05-FPR sequent-intro 22 March 2018 17:26

54 P. Downen and Z. M. Ariola

A,B,C ∈ Type ::= X || 1 || 0 || A×B || A+B || A→ B || ∀X .A || ∃X .A

M,N,P ∈ Term ::= x

|| () || (caseM of)
|| (M,N) || out1(M) || out2(M)

|| in1(M) || in2(M) || (caseM of in1(x)⇒ N| in2(y)⇒ P)

|| λx.M ||M N

|| ΛX .M ||M B

|| B@M || (caseM ofX@x⇒ N)

Typing rules:

() : 1
1I

no 1E rule no ⊥I rule
v : 0

caseM of : C
0E

M : A N : B
(M,N) : A×B

×I
M : A×B
out1(M) : A

×E1
M : A×B
out2(M) : B

×E2

M : A
in1(M) : A+B

+I1
M : B

in2(M) : A+B
+I2

M : A+B

x : A
x

....
N : C

y : B
y

....
P : C

(caseM of in1(x)⇒ N| in2(y)⇒ P) : C
+Ix,y

x : A
x

....
M : B

λx.M : A→ B
→Ix

M : A→ B N : A
M N : B

→E

.... (X /∈ FV(∗))
M : A

ΛX .M : ∀X .A
∀IX

M : ∀X .A
M B : A{B/X}

∀E

M : A{B/X}
B@M : ∃X .A

∃I
M : ∃X .A

x : A
x

.... (X /∈ FV(∗))
N : C (X /∈ FV(C))

(caseM ofX@x⇒ N) : C
∃EX ,x

Call-by-name rewriting rules:

(β×) outi(M1,M2)→Mi

(β+)

case ini(M)of

in1(x1)⇒ N1

in2(x2)⇒ N2

→ Ni {M/xi}

(β→) (λx.M) N→M {N/x}

(β∀) (ΛX .M) B→M {B/X}

(β∃)
caseB@M of

X@y⇒ N
→ N {B/X}{M/y}

Fig. A 2. The polymorphic λ -calculus.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

* 55

Translation from NJ to LJ:

JxKLJ , x

J()KLJ , () JcaseM ofKLJ , µα.〈JMKLJ ||[]〉

J(M,N)KLJ , (JMKLJ ,JNKLJ) Jouti(M)KLJ , µα.〈JMKLJ ||outi[α]〉

Jini(M)KLJ , ini(JMKLJ)

u

w
v

caseM of

in1(x)⇒ N

in2(y)⇒ P

}

�
~

LJ

, µα.〈JMKLJ ||[µ̃x.〈JNKLJ ||α〉, µ̃y.〈JPKLJ ||α〉]〉

Jλx.MKLJ , λx.JMKLJ JM NKLJ , µα.〈JMKLJ ||JNKLJ ·α〉

JΛX .MKLJ , ΛX .JMKLJ JM BKLJ , µα.〈JMKLJ ||B@α〉

JB@MKLJ , B@JMKLJ

t
caseM of

X@x⇒ N

|LJ

, µα.〈JMKLJ ||Λ̃X .µ̃x.〈N||α〉〉

Translation from LJ to NJ:

J〈v||e〉KNJ , JeKNJ [JvKNJ]

JxKNJ , x JαKNJ ,�

Jµα.cKNJ , JcKNJ Jµ̃x.cKNJ , letx =� inJcKNJ

J()KNJ , () J[]KNJ , case�of

J(v1,v2)KNJ , (Jv1KNJ ,Jv2KNJ) Jouti[e]KNJ , JeKNJ [outi(�)]

Jini(v)KNJ , ini(JvKNJ) J[e1,e2]KNJ ,

case�of

in1(x)⇒ JK1KNJ [x]

in2(y)⇒ JK2KNJ [y]

Jλx.vKNJ , λx.JvKNJ Jv · eKNJ , JeKNJ [� JvKNJ]

JΛX .vKNJ , ΛX .JvKNJ JB@eKNJ , JeKNJ [� B]

JB@vKNJ , B@JvKNJ q
Λ̃X .e

yNJ
,

case�of

X@x⇒ JeKNJ [x]

Fig. A 3. Translations between the polymorphic λ -calculus and the pure dual calculi.

whereas ⊥ does not proof because that would mean that • ` ⊥ can be proved in LJ which
would lead to an impossible contradiction caused by ⊥L and Cut.

Corollary 2 (Consistency). There are propositions A and B such that a closed proof of A
is derivable in NJ and a closed proof of B is not derivable in NJ.

This gives us a close relationship between the two alternative formalizations of intuition-
istic logic: NJ and LJ. If we want to find a system of natural deduction that corresponds
with the full classical LK sequent calculus, we would have to extend the NJ basis to include
proofs of classical reasoning principles. If we are only interested in provability, a direct way
to extend the intuitionistic natural deduction NJ to classical logic is to add a sufficiently
expressive classical reasoning principle as an axiom to the system. For example, we could
add the law of excluded middle to NJ to get NK as Gentzen (1935a) did.

ZU064-05-FPR sequent-intro 22 March 2018 17:26

56 P. Downen and Z. M. Ariola

However, there is a more programmatic way of looking at the difference between in-
tuitionistic and classical logic. It turns out that µ-abstractions let programs manipulate
their own control flow similar to Scheme’s (Kelsey et al., 1998) callcc control operator, or
Felleisen’s (1992) C operator. Intuitively, a use of callcc or an abort can be read in terms
of an output abstraction that duplicates or deletes its bound co-variable, respectively, to
perform contraction or weakening on the active type of the term as seen in Section 4:

callcc(λα.v), µα.〈v||α〉 abortc, µδ .c (δ /∈ FV(c))

This phenomenon is a consequence of Griffin’s (1990) observation that under the Curry-
Howard correspondence, classical logic corresponds to control flow manipulation, along
with the fact that the LK sequent calculus formalizes classical logic. Under this inter-
pretation, multiple consequences in the sequent calculus correspond to multiple avail-
able co-variables which give the program multiple possible exit paths. The weakening
and contraction rules on the right for these multiple consequences correspond to deleting
or copying an exit path, respectively. Indeed, multiple consequences with right-handed
structural rules may be seen as the logical essence for this “classical” form of control
effects (so called for the connection to classical logic as well as callcc being the traditional
control operator), since extending natural deduction with multiple consequences, as in
Parigot’s (1992) λ µ-calculus. This gives rise to a programming language with control
effects equivalent to the λ -calculus with a primitive callcc operator given the type for
Pierce’s law ∀X .∀Y.((X → Y)→ X)→ X (Ariola and Herbelin, 2003) or with a primitive
C operator given the type for double negation elimination ∀X .((X→⊥)→⊥)→ X which
uses the empty type ⊥.

B An implicit treatment of structure

The traditional LK sequent calculus from Fig. 4 represents the structural properties of
sequents—exchange, weakening, and contraction—explicitly in the form of inference rules.
However, there are alternate sequent calculi and variations on LK that forgo these structural
rules by baking the properties deeper into the logic itself, which is especially common
when formalizing the type systems for core programming languages based on the sequent
calculus (Curien and Herbelin, 2000; Wadler, 2005; Curien and Munch-Maccagnoni, 2010;
Munch-Maccagnoni and Scherer, 2015). The first change along this line is to treat the
hypotheses and consequences of sequents as unordered collections of propositions, for
example building sequents out of sets or multisets. This way, the exchange rules XL and
XR don’t do anything at all, since the sequents in the premise and conclusion are considered
identical. The second change is to rephrase the core axiom and cut rules in a way that bakes
in weakening and contraction as follows:

Γ,A ` A,∆ Ax
Γ ` A,∆ Γ,A ` ∆

Γ ` ∆
Cut

Contraction is completely implicit when hypothesis and consequences are represented by
sets: Γ,A,A and Γ,A are already the same set. And in any case, even if multisets are used,

ZU064-05-FPR sequent-intro 22 March 2018 17:26

* 57

Γ,x : A ` x : A | ∆ VR
Γ | α : A ` α : A,∆

VL

c : (Γ ` α : A,∆)
Γ ` µα.c : A | ∆ AR

c : (Γ,x : A ` ∆)

Γ | µ̃x.c : A ` ∆
AL

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v||e〉 : (Γ ` ∆)
Cut

Fig. B 1. Implicit (co-)variable scope in the core µµ̃ typing.

contraction can still be derived from these above new Ax and Cut rules. CL is derived as

Γ,A,A ` ∆ Γ,A ` A,∆ Ax

Γ,A ` ∆
Cut

and the derivation of CR is similar. Weakening, unfortunately, cannot be directly derived
in the same manner as contraction, but instead it is admissible. That is to say, given any
proof of the sequent Γ ` ∆, we can build similar proofs Γ,A ` ∆ and Γ ` A,∆ by pushing
the unused A through the proof until it is finally discarded by the generalized Ax rule or
another axiom like >R or ⊥L.

In terms of provability—the question of which sequents can conclude a valid proof
tree—the versions of LK with explicit and implicit structural rules are the same. In the
implicit system, exchange is invisible, contraction is a consequence of axiom and cut, and
all weakening is pushed to the leaves. Furthermore, the two different versions of the axiom
and cut rules are interderivable with respect to their different logics. The explicit Ax rule
in Fig. 4 is a special case of the implicit one above, whereas the implicit Ax rule can
be expanded into many weakenings followed by the explicit rule. Likewise, the explicit
Cut rule can be derived from the implicit rule by weakening the two premises until they
match, whereas the implicit Cut rule can be derived from the explicit rule by contracting
the result of the conclusion to remove the duplication. Therefore, up to provability, the
choice between these two different styles for handling the structural properties of sequents
in a classical or intuitionistic logic are a matter of taste.

On the same subject, it’s also sensible to consider an alternate version of left impli-
cation introduction and right subtraction introduction that duplicates rather than splitting
hypotheses and consequences among the premises in the style of our revised Cut above:

Γ ` A,∆ Γ,B ` ∆

Γ,A⊃ B ` ∆
⊃L

Γ ` A,∆ Γ,B ` ∆

Γ ` A−B,∆
−R

In the presence of structural properties (either explicit or implicit), the two different ⊃L
and −R rules are equivalent up to provability. However, if we want a more refined view
of the structural properties, as in sub-structural logics like linear logic (Girard, 1987), then
these differences become more acute and must be considered carefully.

The implicit treatment of structural rules in LK corresponds to the variant of the core
µµ̃-calculus type system shown in Fig. B 1. In this formulation, there is no explicit use of
structural rules in a typing derivation, but instead the structural properties of sequents fol-
low from the natural scoping rules for static (co-)variables in the µµ̃-calculus, more closely
analogous to the treatment of variable scope in the λ -calculus. During type checking, an

ZU064-05-FPR sequent-intro 22 March 2018 17:26

58 P. Downen and Z. M. Ariola

output abstraction Γ ` µα.c : A | ∆ (dually an input abstraction Γ | µ̃x.c : A ` ∆) signals that
the active type A may undergo an arbitrary number of structural rules depending on how α

(dually x) is referenced in c. During execution, the behavior of structural rules are implicitly
implemented by the substitution operation used by µ and µ̃ reduction, corresponding to the
structural steps of a cut elimination procedure.

As with logic of LK in, the choice between the two formulations of the scoping proper-
ties of µµ̃ (co-)variables is somewhat arbitrary and a matter of taste. Since we are dealing
with a calculus corresponding to classical logic, both treatments of structural properties are
equivalent to each other in a sense—both formulations will admit type checking the same
expressions, even in richer extensions of the core language. However, the two formulations
have their own advantages. The implicit scoping presented in Fig. B 1 is concise and
forgoes the redundancy of repeated rules, whereas the explicit scoping presented in Fig. 6
easily allows for a more refined analysis of the structural properties and exploration of sub-
structural calculi (Munch-Maccagnoni, 2009) corresponding to sub-structural logics that
forbid certain uses of structural rules. The most important thing, though, is that something
is done to express the scope of (co-)variables in the classical language µµ̃ .

C Terminology and notation

Here we give definitions for the common notations and terminology used in this article,
namely: free variables (Appendix C.1), substitution and α renaming (Appendix C.2), and
(deterministic) operational semantics and (confluent) rewriting theory (Appendix C.3).

To avoid too much redundancy, we will only consider the definitions for the dual calculi
explicitly. The corresponding definitions for the core µµ̃-calculus follow the appropriate
subset of the dual calculi, and the relevant definitions for LK come from the following
relationship between logical connectives and type constructors:

>= 1 ⊥= 0 A∧B = A×B A∨B = A+B A⊃ B = A→ B

The rest of the logical connectives (¬, −, ∀, ∃X) correspond to the type constructor of
the same name. So the definitions of free variables, substitution, and α renaming for LK
propositions can be translated from the corresponding definitions for dual calculi types.

C.1 Free variables

The set of free variables of a type are defined by the following function:

FV : Type→℘(TypeVariable)

FV(X), {X} FV(¬A), FV(A)

FV(A×B), FV(A)∪FV(B) FV(A+B), FV(A)∪FV(B)

FV(A→ B), FV(A)∪FV(B) FV(A−B), FV(A)∪FV(B)

FV(∀X .A), FV(A)−{X} FV(∃X .A), FV(A)−{X}

The main lines of note is that X has exactly itself in its set of free variables, and the
quantifiers ∀ and ∃ bind their given type variable, thereby removing it from their set of

ZU064-05-FPR sequent-intro 22 March 2018 17:26

* 59

free variables. In contrast, the free type variables of sequents is defined pointwise in terms
of the above function by collecting together the union of all the free variables in each type:

FV(xn : An, . . . ,x1 : A1 ` α1 : B1, . . . ,αm : Bm)

, FV(An)∪·· ·∪FV(A1)∪FV(B1)∪·· ·∪FV(Bm)

The set of free variables in commands, terms, and co-terms follows a similar logic to the
free variables in types, where (co-)variables are their own free sets, and binders (µ , µ̃ , λ ,
λ̃ , Λ, Λ̃) remove their bound variable from the free set. For the purpose of representing the
result of the FV function on commands and (co-)terms, we use the set AnyVariable which
is the union of all variables (x, . . .), co-variables (α, . . .), and type variables (X , . . .):

FV : Command→℘(AnyVariable)

FV(〈v||e〉), FV(v)∪FV(e)

FV : Term→℘(AnyVariable) FV : CoTerm→℘(AnyVariable)

FV(x), {x} FV(α), {α}
FV(µα.c), FV(c)−{α} FV(µ̃x.c), FV(c)−{x}
FV((v,v′)), FV(v)∪FV(v′) FV([e,e′]), FV(e)∪FV(e′)

FV(ini(v)), FV(v) FV(outi[e]), FV(e)

FV(not(e)), FV(e) FV(not[v]), FV(v)

FV(λx.v), FV(v)−{x} FV(λ̃α.e), FV(e)−{α}
FV(e · v), FV(e)∪FV(v) FV(v · e), FV(v)∪FV(e)

FV(ΛX .v), FV(v)−{X} FV(Λ̃X .e), FV(e)−{X}
FV(B@v), FV(B)∪FV(v) FV(B@e), FV(B)∪FV(e)

C.2 Substitution

The main obstacle in capture-avoiding substitution is to ensure that, when substituting un-
derneath a binding form, the bound variable is not free in the expression being substituted
under the binder, which is the action known as capture. The capture-avoiding substitution
of C for Z in a type A, written A{C/Z}, is defined as the following partial function:

X {C/Z},

{
X if X 6= Z

C if X = Z
(¬A){C/Z}, ¬(A{C/Z})

(A×B){C/Z}, (A{C/Z})× (B{C/Z}) (A+B){C/Z}, (A{C/Z})+(B{C/Z})
(A→ B){C/Z}, (A{C/Z})→ (B{C/Z}) (A−B){C/Z}, (A{C/Z})− (B{C/Z})
(∀X .A){C/Z}, ∀X .(A{C/Z}) (∃X .A){C/Z}, ∃X .(A{C/Z})

if X /∈ FV(C) if X /∈ FV(C)

The main lines of interest is what happens during X {C/Z}, in which we must check
whether X and Z are the same type variable to determine whether X is left unchanged

ZU064-05-FPR sequent-intro 22 March 2018 17:26

60 P. Downen and Z. M. Ariola

or replaced with C, and during (∀X .A){C/Z} and (∃X .A){C/Z}, in which we must check
that X is not a free variable of C to avoid capture and fail to produce any result in that case.

At the level of programs, capture-avoiding substitution follows a similar pattern. Substi-
tuting values for variables is defined as:

〈v||e〉{V/z}, 〈v{V/z}||e{V/z}〉

x{V/z},

{
x if x 6= z

V if x = z
α {V/z}, α

(µα.c){V/z}, µα.(c{V/z}) [µ̃x.c]{V/z}, µ̃x.(c{V/z})
if α /∈ FV(V) if x /∈ FV(V)

(v,v′){V/z}, (v{V/z} ,v′ {V/z}) [e,e′]{V/z}, [e{V/z} ,e′ {V/z}]
ini(v){V/z}, ini(v{V/z}) outi[e]{V/z}, outi[e{V/z}]
not(e){V/z}, not(e{V/z}) not[v]{V/z}, not[v{V/z}]

(λx.v){V/z}, λx.(v{V/z}) [λ̃α.e]{V/z}, λ̃α.[e{V/z}]
if x /∈ FV(V) if α /∈ FV(V)

(e · v){V/z}, [e{V/z}] · (v{V/z}) [v · e]{V/z}, (v{V/z}) · [e{V/z}]
(ΛX .v){V/z}, ΛX .(v{V/z}) [Λ̃X .e]{V/z}, Λ̃X .[e{V/z}]

if X /∈ FV(V) if X /∈ FV(V)

(B@v){V/z}, B@(v{V/z}) [B@e]{V/z}, B@[e{V/z}]

Here, we must decide whether x is replaced in x{V/z}, and be careful to avoid capture
when going under the binders µ , µ̃ , λ , λ̃ , Λ, Λ̃ by failing to produce a result in the worst
case. Substituting co-values for co-variables is defined analogously to the above with the
same free variable checks for capture-avoidance and where two base cases for variables
and co-variables are changed to the following:

x{E/γ}, x α {E/γ},

{
α if α 6= γ

E if α = γ

Additionally, substituting types for type variables in commands and (co-)terms is also
analogous to the above, where we have fewer places that we need to check for capture
(because variables and co-variables cannot appear in types), but also need to distribute
substitution into existential hiding (B@v) and universal instantiation (B@e) as follows:

x{C/Z}, x α {C/Z}, α

(λx.v){C/Z}, λx.(v{C/Z}) (λ̃α.e){C/Z}, λ̃α.(e{C/Z})
(B@v){C/Z}, (B{C/Z})@(v{C/Z}) [B@e]{C/Z}, (B{C/Z})@[e{C/Z}]

To get around the partiality of the above substitution operations, we can use α renam-
ing to replace bound variables and avoid undefined cases. Intuitively, for any instance of
substitution, the primary expression being substituted into (be it a type, command, term,
or co-term) can always be α renamed into an equivalent expression for which substitution
has a definite result: for all A, Z, and C there is a B =α A such that B{C/Z} is defined. The

ZU064-05-FPR sequent-intro 22 March 2018 17:26

* 61

α renaming rules of types are:

∀X .A =α ∀Y.(A{Y/X}) ∃X .A =α ∃Y.(A{Y/X})

Similarly, the α renaming rules of terms and co-terms are:

µα.c =α µβ .(c{β/α}) µ̃x.c =α µ̃y.[c{y/x}]

λx.v =α λy.(v{y/x}) λ̃α.v =α λ̃β .[e{β/α}]
ΛX .v =α ΛY.(v{Y/X}) Λ̃X .e =α Λ̃Y.[e{Y/X}]

C.3 Rewriting and operational semantics

The single-step operational relation (c 7→ c′) is a relation between commands defined
by the operational rules stated previously: c 7→ c′ if any of the individual rules apply.
The operational semantics (c 7→→ c′) is the reflexive, transitive closure of the single-step
operational relation defined by the following inference rules:

c 7→ c′

c 7→→ c′
Inclusion

c 7→→ c Reflexivity
c 7→→ c′ c′ 7→→ c′′

c 7→→ c′′
Transitivity

An operational semantics is deterministic when each command can step to at most one
other command, i.e., c 7→ c1 and c 7→ c2 implies that c1 and c2 are identical commands.

The single-step rewriting relation (→) is a family of relations between commands, terms,
and co-terms, respectively, defined by the rewriting rules stated previously and closed
under the following compatibility inference rules:

c→ c′

µα.c→ µα.c′
v→ v′

〈v||e〉 → 〈v′||e〉
e→ e′

〈v||e〉 → 〈v||e′〉
c→ c′

µ̃x.c→ µ̃x.c′

v1→ v′1
(v1,v2)→ (v′1,v2)

v2→ v′2
(v1,v2)→ (v1,v′2)

e1→ e′1
[e1,e2]→e′1,e2

e2→ e′2
[e1,e2]→e1,e′2

v→ v′

ini(v)→ ini(v′)
e→ e′

not(e)→ not(e′)
v→ v′

not[v]→ not[v′]
e→ e′

outi[e]→ outi[e′]

v→ v′

λx.v→ λx.v′
v→ v′

e · v→ e · v′
e→ e′

e · v→ e′ · v
v→ v′

v · e→ v′ · e
e→ e′

v · e→ v · e′
e→ e′

λ̃α.e→ λ̃α.e′

v→ v′

ΛX .v→ ΛX .v′
v→ v′

B@v→ B@v′
e→ e′

B@e→ B@e′
e→ e′

Λ̃X .e→ Λ̃X .e′

The rewriting theory (→→) is the reflexive, transitive closure of the family of single-step
rewriting relation defined by analogous inference rules as for the operational semantics:
an inclusion, reflexivity, and transitivity inference rule for each of commands, terms, and
co-terms. A rewriting theory is confluent if any two divergent, many-step reductions join
back together, i.e., c→→ c1 and c→→ c2 implies that c1→→ c′ and c2→→ c′ for some c′, and
similarly for reductions on terms and co-terms.

	Introduction
	Overview

	Truth versus falsehood
	Gentzen's LK
	Consistency and cut elimination
	Logical duality
	A core calculus
	Two dual substitutions
	The fundamental dilemma of computation

	The dual calculi
	Focusing on computation
	Call-by-value is dual to call-by-name

	Conclusion

	Classical versus intuitionistic logic and computation
	An implicit treatment of structure

	Terminology and notation
	Free variables
	Substitution
	Rewriting and operational semantics

